Redian新闻
>
Redis分布式锁的10个坑

Redis分布式锁的10个坑

公众号新闻

点击上方“芋道源码”,选择“设为星标

管她前浪,还是后浪?

能浪的浪,才是好浪!

每天 10:33 更新文章,每天掉亿点点头发...

源码精品专栏

 
来源:捡田螺的小男孩


前言

日常开发中,经常会碰到秒杀抢购等业务。为了避免并发请求造成的库存超卖 等问题,我们一般会用到Redis分布式锁。但是使用Redis分布式锁,很容易踩坑哦~ 本文田螺哥将给大家分析阐述,Redis分布式锁的10个坑~

基于 Spring Boot + MyBatis Plus + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能

  • 项目地址:https://github.com/YunaiV/ruoyi-vue-pro
  • 视频教程:https://doc.iocoder.cn/video/

1. 非原子操作(setnx + expire)

一说到实现Redis的分布式锁,很多小伙伴马上就会想到setnx+ expire命令。也就是说,先用setnx来抢锁,如果抢到之后,再用expire给锁设置一个过期 时间。

伪代码如下:

if(jedis.setnx(lock_key,lock_value) == 1){ //加锁
    jedis.expire(lock_key,timeout); //设置过期时间
    doBusiness //业务逻辑处理
}

这块代码是有坑 的,因为setnxexpire两个命令是分开写的,并不是原子操作!如果刚要执行完setnx加锁,正要执行expire设置过期时间时,进程crash或者要重启维护了,那么这个锁就“长生不老 ”了,别的线程永远获取不到锁啦。

基于 Spring Cloud Alibaba + Gateway + Nacos + RocketMQ + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能

  • 项目地址:https://github.com/YunaiV/yudao-cloud
  • 视频教程:https://doc.iocoder.cn/video/

2. 被别的客户端请求覆盖( setnx + value为过期时间)

为了解决:发生异常时,锁得不到释放的问题 。有小伙伴提出,可以把过期时间 放到setnxvalue里面。如果加锁失败,再拿出value值和当前系统时间校验一下是否过期即可。伪代码实现如下:

long expireTime = System.currentTimeMillis() + timeout; //系统时间+设置的超时时间
String expireTimeStr = String.valueOf(expireTime); //转化为String字符串

// 如果当前锁不存在,返回加锁成功
if (jedis.setnx(lock_key, expireTimeStr) == 1) {
        return true;


// 如果锁已经存在,获取锁的过期时间
String oldExpireTimreStr = jedis.get(lock_key);

// 如果获取到的老的预期过期时间,小于系统当前时间,表示已经过期了
if (oldExpireTimreStr != null && Long.parseLong(oldExpireTimreStr) < System.currentTimeMillis()) {

     //锁已过期,获取上一个锁的过期时间,并设置现在锁的过期时间(不了解redis的getSet命令的小伙伴,可以去官网看下哈)
    String oldValueStr = jedis.getSet(lock_key, expireTimeStr);
    
    if (oldValueStr != null && oldValueStr.equals(oldExpireTimreStr)) {
      //考虑多线程并发的情况,只有一个线程的设置值和当前值相同,它才可以加锁
      return true;
    }
}
        
//其他情况,均返回加锁失败
return false;
}

这种实现的方案,也是有坑的:如果锁过期的时候,并发多个客户端同时请求过来,都执行jedis.getSet(),最终只能有一个客户端加锁成功,但是该客户端锁的过期时间,可能被别的客户端覆盖

3. 忘记设置过期时间

之前review代码的时候,看到这样实现的分布式锁,伪代码

try{
  if(jedis.setnx(lock_key,lock_value) == 1){//加锁
     doBusiness //业务逻辑处理
     return true//加锁成功,处理完业务逻辑返回
  }
  return false//加锁失败
finally {
    unlock(lockKey);- //释放锁

这块有什么问题呢?是的,忘记设置过期时间了 。如果程序在运行期间,机器突然挂了,代码层面没有走到finally代码块,即在宕机前,锁并没有被删除掉,这样的话,就没办法保证解锁,所以这里需要给lockKey加一个过期时间。注意哈,使用分布式锁,一定要设置过期时间哈

4. 业务处理完,忘记释放锁

很多小伙伴,会使用Redisset指令扩展参数来实现分布式锁。

set指令扩展参数:SET key value[EX seconds][PX milliseconds][NX|XX]

- NX :表示key不存在的时候,才能set成功,也即保证只有第一个客户端请求才能获得锁,
  而其他客户端请求只能等其释放锁,才能获取。
- EX seconds :设定key的过期时间,时间单位是秒。
- PX milliseconds: 设定key的过期时间,单位为毫秒
- XX: 仅当key存在时设置值

小伙伴会写出如下伪代码:

if(jedis.set(lockKey, requestId, "NX""PX", expireTime)==1){ //加锁
   doBusiness //业务逻辑处理
   return true//加锁成功,处理完业务逻辑返回
}
return false//加锁失败

这块伪代码,初看觉得没啥问题,但是细想,不太对呀。因为忘记释放锁 了!如果每次加锁成功,都要等到超时时间才释放锁 ,是会有问题的。这样程序不高效,应当每次处理完业务逻辑,都要释放锁

正例如下:

try{
  if(jedis.set(lockKey, requestId, "NX""PX", expireTime)==1){//加锁
     doBusiness //业务逻辑处理
     return true//加锁成功,处理完业务逻辑返回
  }
  return false//加锁失败
finally {
    unlock(lockKey);- //释放锁
}  

5. B的锁被A给释放了

我们来看下这块伪代码:

try{
  if(jedis.set(lockKey, requestId, "NX""PX",expireTime)==1){//加锁
     doBusiness //业务逻辑处理
     return true//加锁成功,处理完业务逻辑返回
  }
  return false//加锁失败
finally {
    unlock(lockKey); //释放锁
}  

大家觉得会有哪些坑 呢?

假设在这样的并发场景下:A、B两个线程来尝试给Redis的keylockKey加锁,A线程先拿到锁(假如锁超时时间是3秒后过期)。如果线程A执行的业务逻辑很耗时,超过了3秒还是没有执行完。这时候,Redis会自动释放lockKey锁。刚好这时,线程B过来了,它就能抢到锁了,开始执行它的业务逻辑,恰好这时,线程A执行完逻辑,去释放锁的时候,它就把B的锁给释放掉了。

正确的方式应该是,在用set扩展参数加锁时,放多一个这个线程请求的唯一标记 ,比如requestId,然后释放锁的时候,判断一下是不是刚刚的请求

try{
  if(jedis.set(lockKey, requestId, "NX""PX",expireTime)==1){//加锁
     doBusiness //业务逻辑处理
     return true//加锁成功,处理完业务逻辑返回
  }
  return false//加锁失败
finally {
    if (requestId.equals(jedis.get(lockKey))) { //判断一下是不是自己的requestId
      unlock(lockKey);//释放锁
    }   
}  

6. 释放锁时,不是原子性

以上的这块代码,还是有坑:

   if (requestId.equals(jedis.get(lockKey))) { //判断一下是不是自己的requestId
      unlock(lockKey);//释放锁
    }   

因为判断是不是当前线程加的锁和释放锁不是一个原子操作 。如果调用unlock(lockKey)释放锁的时候,锁已经过期,所以这把锁已经可能已经不属于当前客户端,会解除他人加的锁

因此,这个坑就是:判断和删除是两个操作,不是原子的,有一致性问题。释放锁必须保证原子性,可以使用Redis+Lua脚本来完成,类似Lua脚本如下:

if redis.call('get',KEYS[1]) == ARGV[1] then 
   return redis.call('del',KEYS[1]) 
else
   return 0
end;  

7. 锁过期释放,业务没执行完

加锁后,如果超时了,Redis会自动释放清除锁,这样有可能业务还没处理完,锁就提前释放了 。怎么办呢?

有些小伙伴认为,稍微把锁过期时间设置长一些就可以啦。其实我们设想一下 ,是否可以给获得锁的线程,开启一个定时守护线程,每隔一段时间检查锁是否还存在,存在则对锁的过期时间延长,防止锁过期提前释放。

当前开源框架Redisson解决了这个问题。我们一起来看下Redisson底层原理图吧:

只要线程加锁成功,就会启动一个watch dog看门狗,它是一个后台线程 ,会每隔10秒检查一下,如果线程一还持有锁,那么就会不断的延长锁key的生存时间。因此,Redisson就是使用Redisson解决了锁过期释放,业务没执行完问题

8. Redis分布式锁和@transactional一起使用失效

大家看下这块伪代码:

@Transactional
public void updateDB(int lockKey) {
  boolean lockFlag = redisLock.lock(lockKey);
  if (!lockFlag) {
    throw new RuntimeException(“请稍后再试”);
  }
   doBusiness //业务逻辑处理
   redisLock.unlock(lockKey);
}

在事务中,使用了Redis分布式锁.这个方法一旦执行,事务生效,接着就Redis分布式锁生效,代码执行完后,先释放Redis分布式锁,然后再提交事务数据,最后事务结束。在这个过程中,事务没有提交之前,分布式锁已经被释放,导致分布式锁失效

这是因为:

springAop,会在updateDB方法之前开启事务,之后再加锁,当锁住的代码执行完成后,再提交事务,因此锁住的代码块执行是在事务之内执行的,可以推断在代码块执行完时,事务还未提交,锁已经被释放,此时其他线程拿到锁之后进行锁住的代码块,读取的库存数据不是最新的。

正确的实现方法,可以在updateDB方法之前就上锁 ,即还没有开事务之前就加锁,那么就可以保证线程的安全性.

9. 锁可重入

前面讨论的Redis分布式锁,都是不可重入的

所谓的不可重入 ,就是当前线程执行某个方法已经获取了该锁,那么在方法中尝试再次获取锁时,会阻塞,不可以再次获得锁。同一个人拿一个锁 ,只能拿一次不能同时拿2次。

不可重入的分布式锁的话,是可以满足绝大多数的业务场景 。但是有时候一些业务场景,我们还是需要可重入的分布式锁 ,大家实现分布式锁的过程中,需要注意一下 ,你当前的业务场景是否需要可重入的分布式锁。

Redis只要解决这两个问题,就能实现重入锁 了:

  • 怎么保存当前持有的线程
  • 怎么维护加锁次数(即重入了多少次)

实现一个可重入的分布式锁,我们可以参考JDKReentrantLock的设计思想。实际上,可以直接使用Redisson框架,它是支持可重入锁的。

10. Redis主从复制导致的坑

实现Redis分布式锁的话,要注意Redis主从复制的坑 。因为Redis一般都是集群部署的:

如果线程一在Redismaster节点上拿到了锁,但是加锁的key还没同步到slave节点。恰好这时,master节点发生故障,一个slave节点就会升级为master节点。线程二就可以获取同个key的锁啦,但线程一也已经拿到锁了,锁的安全性就没了。

为了解决这个问题,Redis作者 antirez提出一种高级的分布式锁算法:RedlockRedlock核心思想是这样的:

搞多个Redis master部署,以保证它们不会同时宕掉。并且这些master节点是完全相互独立的,相互之间不存在数据同步。同时,需要确保在这多个master实例上,是与在Redis单实例,使用相同方法来获取和释放锁。

我们假设当前有5Redis master节点,在5台服务器上面运行这些Redis实例。

RedLock的实现步骤如下:

  1. 获取当前时间,以毫秒为单位。
  2. 按顺序向5master节点请求加锁。客户端设置网络连接和响应超时时间,并且超时时间要小于锁的失效时间。(假设锁自动失效时间为10秒,则超时时间一般在5-50毫秒之间,我们就假设超时时间是50ms吧)。如果超时,跳过该master节点,尽快去尝试下一个master节点。
  3. 客户端使用当前时间减去开始获取锁时间(即步骤1记录的时间),得到获取锁使用的时间。当且仅当超过一半(N/2+1,这里是5/2+1=3个节点)的Redis master节点都获得锁,并且使用的时间小于锁失效时间时,锁才算获取成功。(如上图,10s> 30ms+40ms+50ms+4m0s+50ms
  4. 如果取到了锁,key的真正有效时间就变啦,需要减去获取锁所使用的时间。
  5. 如果获取锁失败(没有在至少N/2+1个master实例取到锁,有或者获取锁时间已经超过了有效时间),客户端要在所有的master节点上解锁(即便有些master节点根本就没有加锁成功,也需要解锁,以防止有些漏网之鱼)。

简化下步骤就是:

  • 按顺序向5个master节点请求加锁
  • 根据设置的超时时间来判断,是不是要跳过该master节点。
  • 如果大于等于3个节点加锁成功,并且使用的时间小于锁的有效期,即可认定加锁成功啦。
  • 如果获取锁失败,解锁!


欢迎加入我的知识星球,一起探讨架构,交流源码。加入方式,长按下方二维码噢

已在知识星球更新源码解析如下:

最近更新《芋道 SpringBoot 2.X 入门》系列,已经 101 余篇,覆盖了 MyBatis、Redis、MongoDB、ES、分库分表、读写分离、SpringMVC、Webflux、权限、WebSocket、Dubbo、RabbitMQ、RocketMQ、Kafka、性能测试等等内容。

提供近 3W 行代码的 SpringBoot 示例,以及超 4W 行代码的电商微服务项目。

获取方式:点“在看”,关注公众号并回复 666 领取,更多内容陆续奉上。

文章有帮助的话,在看,转发吧。

谢谢支持哟 (*^__^*)

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
分布式存储架构发展及技术分析分布式软件:X86/ARM CPU混合部署如何设计一个高效的分布式日志服务平台首个Unified Redis Release,Redis影响最深远的版本发布原创《陈寅恪学问之“不古不今”》 其一《滿山紅葉似彩霞》Spring Boot 整合分布式消息平台 Pulsar分布式存储:GPFS对话Ceph(收藏)细数线程池的10个坑,面试线程不怕不怕啦后端程序员必备:分布式事务基础篇「赛博联物」完成千万级天使+轮融资,用高精度电测技术解决分布式能源管理难题|早起看早期Redmi 新机再曝,Redmi Note 13、Redmi K70期待哪款?聚焦2023云边协同大会 | 构建云边端一体分布式云,助力行业数字化转型升级清华发布SmartMoE:一键实现高性能MoE稀疏大模型分布式训练揭秘大语言模型实践:分布式推理的工程化落地才是关键!分布式中灰度方案就该这样设计!聊一聊分布式系统中的时空观构建bug怎样算修完?浅谈团队分布式bug管理 —— git-poison简单易用的bug管理工具分布式云行业实践指南(2023)分布式PostgreSQL基准测试:Azure Cosmos DB、CockroachDB和YugabyteDB收藏:分布式存储分类、优势及应用领域大模型分布式训练并行技术(一)-概述分布式存储技术:三副本 vs. 双重RAID可惜没有像爱大自然那样更早爱上你解读Go分布式链路追踪-Opentelemetry分布式十二问,万字图文详解Service Mesh:探索分布式系统的幻觉与未来Web3+AIoT=DePIN,分布式物理基础设施网络,一片不可不知的新蓝海让 GPT-4 帮我设计一个分布式缓存系统,从尝试到被我逼疯!保姆级教程:Spring Cloud 集成 Seata 分布式事务七国峰会,严岛神社和弥山分布式存储的七方面问题07月21日:小米如何"分布式管理"3万员工分布式存储架构发展及技术分析(2023)起名记---写给宝宝的信(2)
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。