Redian新闻
>
全面解析RLHF,PPO,DPO,Flash Attention,增量学习等大模型算法

全面解析RLHF,PPO,DPO,Flash Attention,增量学习等大模型算法

公众号新闻
随着大模型的飞速发展,在短短一年间就有了大幅度的技术迭代更新,从LoRA、QLoRA、AdaLoRa、ZeroQuant、Flash Attention、KTO、PPO、DPO、蒸馏技术到模型增量学习、数据处理、开源模型的理解等,几乎每天都有新的发展。

我们总结了算法工程师需要掌握的大模型微调技能,并制作了大模型微调技能图谱,希望可以帮助大家将知识体系梳理清楚,为未来在大模型的工作与科研道路上节省时间,提高效率!

作为算法工程师,面对如此庞大又在飞速迭代的大模型技术体系,您是否有感觉自己的学习步伐有点跟不上技术的发展?或者对这些新兴技术的理解仅仅停留在应用层面上,实际上对背后的原理并没有深入剖析过?如果您希望在大模型赛道上持续保持竞争壁垒,对技术本身的深入理解是很必要的选项。 

鉴于这类痛点,并迎合技术的发展,贪心科技推出《大模型微调算法实战营》,通过3个月的时间,全面掌握以上图谱中列出的知识技术以及背后的精髓,帮大家大大节省学习成本。

下面是7个阶段学习安排,感兴趣的朋友们欢迎扫码咨询。  

扫描二维码,添加顾问老师咨询~



详细大纲


第一阶段:大模型基础
第一章:开营典礼
  • 介绍课程目标、安排和预期成果

  • 明确对学员的要求和期望

  • 概述课程中将探讨的项目和技术

  • 讨论大模型技术的行业现状

  • 推荐关注的工具和开源项目

第二章:大模型是怎么炼成的
  • 大模型的定义和重要性

  • 大模型发展历程和关键里程碑

  • 预训练与微调的基本概念

  • 大模型预训练、数据处理、微调、对齐

  • 大模型训练的基础设施和资源需求

  • 面临的挑战和未来发展方向

第三章:Transformer模型原理剖析(1)
  • Transformer模型的基本架构

  • Self-Attention机制的原理和计算过程

  • Multi-Head Attention的设计和作用

  • 注意力权重的计算和可视化

  • Self-Attention在模型中的作用和优势

第四章:Transformer模型原理剖析(2)
  • Positional Encoding的概念和实现方法

  • Rotary Positional Embedding

  • BPE tokenizer,SentencePiece Encoding

  • Transformer中的Feed-Forward Networks

  • Layer Normalization的原理和重要性

  • Transformer模型中的残差连接

  • 编码器和解码器的结构差异

第五章:Transformer模型原理剖析(3)
  • Transformer的训练策略和优化方法

  • 参数初始化和学习率调度

  • Transformer模型的正则化技术

  • Attention机制的变种和改进

  • Greedy Decoding, Beam-search

  • Top-K Sampling, Top-p Sampling

  • Transformer源码解读

第六章:Transformer模型全量微调和高效微调
  • 全量微调与高效微调的区别

  • Transformer模型微调的常见策略

  • 选择合适的微调任务和数据集

  • 微调中的挑战和最佳实践

  • 评估微调效果的标准和工具

第七章:【项目实战1】大模型PEFT微调项目
  • PEFT的安装

  • PEFT的使用说明,核心模块讲解

  • 指令数据准备和预处理的技巧

  • 实施微调的详细步骤

  • 微调项目的性能评估和分析

第八章:Generative Pre-Trained Transformer模型家族剖析
  • Generative Pre-Trained Transformer系列模型的发展历程

  • Generative Pre-Trained Transformer代码解读

  • Zero-shot Prompting

  • Few-shot Prompting

  • 模型的局限性和挑战

第九章:LLaMA家族模型剖析
  • LLaMA模型的特点和技术创新

  • LLaMA模型的原理剖析

  • LLaMA源码解读

  • LLaMA与其他大模型的对比

  • LLaMA模型的训练和微调策略

  • 面对LLaMA模型的未来发展方向

第十章:智谱AI模型家族剖析智谱AI模型的架构和设计理念
  • 智谱AI模型模型解读

  • 智谱AI模型的技术迭代

  • 智谱AI模型的优势和应用领域

  • 智谱AI模型微调和部署的实践指南

  • 智谱AI模型的评估和性能优化

第十一章:Baichuan家族模型剖析
  • Baichuan模型的概述和核心技术

  • Baichuan原理剖析和源码解读

  • Baichuan模型与其他模型的比较

  • Baichuan模型在特定任务上的应用

  • 微调Baichuan模型的策略和技巧

  • Baichuan模型的局限


第二阶段:大模型指令微调之- LoRA
第十二章:指令微调基础
  • 指令微调的定义与应用背景

  • 指令微调与传统微调的对比

  • 指令微调在大模型中的重要性

  • 指令微调流程概览

  • 指令微调的挑战与策略

第十三章:必要矩阵知识
  • 矩阵和向量的基本概念

  • 矩阵运算与性质

  • 特征值和特征向量

  • 矩阵分解(SVD)技术简介

  • 矩阵在LoRA算法中的应用

第十四章:LoRA算法剖析
  • LoRA算法的原理与动机

  • Lora中的Low-rank假设

  • LoRA的关键技术组件

  • LoRA算法的实现步骤

  • LoRA算法的优化与调试

  • LoRA算法源码解读

第十五章:指令数据搜集和生成
  • 指令数据的重要性与来源

  • 自动化和手动搜集指令数据的方法

  • 指令数据的预处理和标准化

  • 生成高质量指令数据的技巧

  • 指令数据集的维护与更新

  • 指令数据的人工质量评估与自动质量评估

第十六章:【项目实战2】Alpaca微调大模型
  • Alpaca微调项目的设计与目标

  • 准备Alpaca微调所需的指令数据

  • 实施Alpaca微调的详细步骤

  • 评估Alpaca微调效果的方法

  • 分析与解决Alpaca微调中遇到的问题

  • 解读Alpaca项目源码

第十七章:AdaLoRA算法剖析
  • AdaLoRA与LoRa的比较

  • 动态改变矩阵权重的意义

  • SVD与AdaLoRA

  • 训练AdaLoRA

  • AdaLoRA源码解读

  • AdaLoRA案例讲解

第十八章:【项目实战3】Vicuna微调大模型
  • Vicuna微调项目的背景与应用场景

  • ShareGPT数据收集

  • Vicuna微调的实施流程和技术细节

  • Vicuna微调效果的评估与分析

  • 基于Vicuna微调项目的经验总结与展望


第三阶段:大模型指令微调之- Quantization

第十九章:模型Quantization基础
  • Quantization在深度学习中的作用与原理

  • 常见的Quantization技术及其分类

  • 模型Quantization对性能和精度的影响

  • Quantization的实践步骤和工具

  • 模型Quantization的挑战与解决策略

第二十章:QLoRA算法剖析
  • QLoRA算法的定义和背景

  • QLoRA与LoRA的关键区别和改进

  • QLoRA算法的详细实现过程

  • 4bit NormalFloat, double quantization

  • QLoRA算法的优化和调试技巧

  • QLoRA源码解读

第二十一章:【项目实战4】QLoRA微调LLaMA大模型
  • 技术方案的设计

  • 收集和预处理指令数据

  • 基于PEFT进行QLora大模型微调

  • 评估QLoRA微调之后的效果

  • 分析QLoRA微调过程中遇到的问题及其解决方案

第二十二章:模型Compression技术
  • 模型压缩的必要性和技术背景

  • 常见的模型压缩方法概述

  • 模型压缩与Quantization的关系

  • 实施模型压缩的步骤和注意事项

  • 模型压缩技术的最新研究进展

第二十三章:模型蒸馏技术探索
  • 模型蒸馏的基本概念和工作原理

  • 模型蒸馏在模型优化中的应用

  • 不同蒸馏技术的比较和选择

  • 实施模型蒸馏的具体方法

  • 模型蒸馏技术面临的挑战及其解决策略

第二十四章:ZeroQuant算法剖析
  • ZeroQuant算法的基本原理和应用背景

  • ZeroQuant在模型Quantization中的创新点

  • 实现ZeroQuant的关键步骤和技术要求

  • ZeroQuant源码解读

  • ZeroQuant技术的局限性和未来方向

第二十五章:SmoothQuant算法剖析
  • SmoothQuant算法的设计理念和核心技术

  • SmoothQuant与传统Quantization方法的区别

  • 实施SmoothQuant算法的具体流程

  • SmoothQuant源码解读

  • SmoothQuant面临的技术挑战和改进路径


第四阶段:大模型对齐之-RLHF
第二十六章:RLHF算法概述
  • RLHF的起源和背景

  • RLHF在人工智能中的作用和重要性

  • 强化学习与人类反馈:结合的优势

  • RLHF的主要应用领域和案例研究

  • 从InstructGPT到GPT4

第二十七章:人类反馈的集成
  • 人类反馈在强化学习中的角色

  • 不同形式的人类反馈:标注、偏好、指导

  • 从人类反馈中学习:方法和策略

  • 人类反馈数据的收集和处理

  • 人类反馈强化学习的挑战和解决方案

第二十八章:PPO算法概述
  • PPO的起源和动机

  • PPO与其他策略梯度方法的对比

  • 算法核心概念和原理

  • PPO的优势和局限性

  • PPO的应用领域和案例

第二十九章:强化学习和数据基础
  • 强化学习基本概念介绍

  • 数据在强化学习中的作用和重要性

  • 状态、动作和奖励的数据结构

  • 数据收集、处理和利用的方法

  • 使用模拟环境进行数据生成和测试

第三十章:策略优化基础
  • 策略梯度方法简介

  • 优势函数和回报

  • 基线的概念和作用

  • 累积回报与折扣回报

  • 探索与利用的权衡

第三十一章:PPO核心技术细节
  • 目标函数和KL散度

  • 裁剪目标函数的原理

  • 多次迭代优化策略

  • 广义优势估计(GAE)

  • 重要性采样和策略更新

第三十二章:基于开源大模型从零实现PPO算法
  • 构建神经网络模型

  • 实现PPO的优化循环

  • 自适应学习率调整

  • 调试和性能分析技巧

  • 评估对齐之后的大模型

第三十三章:高级PPO技术和强化学习进阶
  • PPO变体和改进策略

  • 处理高维输入和模型泛化

  • 多智能体环境中的PPO应用

  • 强化学习中的迁移学习和多任务学习

  • 强化学习中的安全性和可解释性

第三十四章:【项目实战5】RLHF医疗大模型微调
  • 项目需求分析和技术方案设计

  • 环境设置和任务定义

  • 对齐数据的收集和预处理

  • 实现PPO训练流程

  • 结果分析和性能优化


第五阶段:大模型对齐之-DPO
第三十五章:DPO算法概述
  • DPO(Direct Preference Optimization)介绍

  • 与PPO算法对比

  • DPO的应用场景和重要性

  • 基本原理和工作机制

  • DPO算法的优势和挑战

第三十六章:排序和偏好的基础
  • 偏好与排序问题在AI中的角色

  • 数据表示:成对比较和偏好矩阵

  • 偏好学习的挑战

  • 排序和偏好预测的评估指标

  • 经典偏好学习算法概览

第三十七章:DPO核心技术细节
  • 偏好建模的数学框架

  • 直接与间接偏好优化的对比

  • DPO中的关键算法组件

  • 成对比较数据的处理方法

  • DPO的损失函数和优化策略

第三十八章:DPO算法的从零实现
  • 数据整理与预处理

  • 构建偏好学习模型的步骤

  • 使用Python实现基础DPO模型

  • 在benchmark上测试DPO性能

  • DPO的优势和缺点

第三十九章:【项目实战6】DPO在推荐系统中的应用
  • 推荐系统中的偏好学习

  • 设计DPO驱动的推荐算法

  • 处理实时用户反馈

  • 实施DPO进行推荐模型微调

  • 评估推荐系统的性能

第四十章:高级DPO技术
  • 多任务学习与DPO的结合

  • DPO在非监督学习中的应用

  • 深度学习方法与DPO

  • 交互式偏好学习

  • DPO技术的变种


第六阶段:大模型其他微调技术
第四十一章:Prefix Tuning算法剖析
  • Prefix Tuning的基本原理

  • 实现Prefix Tuning的关键步骤

  • Prefix Tuning源码解读

  • Prefix Tuning与其他微调方法的比较

  • 在NLP任务中应用Prefix Tuning的案例

  • Prefix Tuning的局限性和挑战

第四十二章:Adaptor Tuning算法剖析
  • Adaptor Tuning的基本原理

  • 如何在大模型中插入Adaptor层

  • Adaptor Tuning的优点和应用场景

  • Adaptor Tuning源码解读

  • 实际案例:Adaptor Tuning在分类任务中的应用

  • Adaptor Tuning的效率和扩展性问题

第四十三章:Flash Attention算法剖析
  • Flash Attention的设计思想和算法原理

  • 优化Transformer模型中的注意力机制

  • Flash Attention在提升处理速度和效率上的作用

  • 应用Flash Attention改进大模型的案例分析

  • Flash Attention的实现挑战和解决方案

第四十四章:Flash Attention 2算法剖析
  • 介绍Flash Attention 2与前版本的区别

  • 深入探讨Flash Attention 2的技术改进点

  • Flash Attention 2在复杂任务处理中的应用示例

  • 评估Flash Attention 2的性能和适用范围

  • Flash Attention 2的实现细节和调优建议

第四十五章:Kahneman-Tversky Optimization (KTO) 算法剖析
  • KTO算法背景和理论基础

  • Kahneman-Tversky优化在微调中的应用

  • 实施KTO的关键技术步骤

  • KTO在提高决策质量中的角色

  • KTO应用案例和性能分析

第四十六章:【项目实战7】QLoRA+Flash Attention微调大模型
  • 结合QLoRA和Flash Attention的微调策略

  • 任务选取和数据准备

  • 微调流程详解:从预处理到模型评估

  • 分析微调后模型的性能改进

  • 面临的挑战及解决方案分享


第七阶段:大模型增量学习
第四十七章:大模型增量学习概述
  • 增量学习(Continual learning)的重要性

  • 与传统从零训练的对比

  • 增量学习的应用场景

  • 任务选取和数据准备

  • 微调流程详解:从预处理到模型评估

第四十八章:增量学习与灾难性遗忘
  • 什么是灾难性遗忘

  • 解决灾难性遗忘的思路

  • 正则化、动态网络架构、元学习

  • 通用数据与垂直数据的混合训练

  • 数据中的信息分析

  • 调整学习率

第四十九章:增量学习中的高级主题
  • 增量学习在大规模数据集上的应用

  • 多模态与跨领域增量学习

  • 自适应学习和在线学习技术

  • 强化学习与增量学习的结合

  • 未来增量学习的发展方向


类别
说明
程形式
线上直播+课程学习群答疑
课程安排
13次直播授课,每周1次,每次3-3.5小时
课程服务
25人以内学习群,助教答疑,保证遇到的问题被快速解决
专属咨询顾问与班主任老师全程伴学
全程直播讲解与演示+可反复观看课程视频

课程PPT举例


项目实战举例

课程学习群答疑举例



课程主讲



张老师
人工智能、大模型领域专家

  • 清华大学计算机科学与人工智能研究部博士后
  • 长期在大厂从事对话系统,预训练语言模型的研发和商业化
  • 主要从事自然语言处理,对话领域的先行研究与商业化
  • 先后在AAAI,NeurIPS,ACM,EMNLP等国际顶会及期刊发表高水平论文十余篇

李文哲
贪心科技创始人兼CEO
人工智能、大模型领域专家

  • 多家上市公司技术战略顾问
  • 曾任金融科技独角兽公司首席科学家
  • 曾任量化投资初创公司首席科学家
  • 曾任美国亚马逊推荐系统工程师
  • 深耕人工智能领域十余年,授课培养AI学员数万人


报名咨询


扫描二维码,添加顾问老师咨询~

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
北京内推 | 中国电信人工智能研究院招聘多模态大模型算法研发实习生ICLR 2024 | RLHF有了通用平台和基准,天大开源,专攻现实决策场景仅靠开源数据复刻出LLaMA3指令学习效果,在线迭代RLHF全流程解决方案来了深入解析大模型主流微调方法:从LoRA、QLoRA到Flash Attention、增量学习万字综述大模型高效推理:无问芯穹与清华、上交最新联合研究全面解析大模型推理优化i7-12700KF,还是i5-13600KF,DIY主机性能演示ICML 2024 | 为什么我们应该做online RLHF/DPO?深圳/香港/上海内推 | 商汤研究院基础语言模型团队招聘大语言模型算法研究员Sora是世界模拟器吗?全球首篇综述全面解析通用世界模型全面超越DPO:陈丹琦团队提出简单偏好优化SimPO,还炼出最强8B开源模型《惦记》&《祝你祝你》陈丹琦团队新作:微调8B模型超越Claude3 Opus,背后是RLHF新平替北京/上海内推 | 小红书智能创作团队招聘多模态大模型算法工程师/实习生这个团队做了OpenAI没Open的技术,开源OpenRLHF让对齐大模型超简单今日arXiv最热NLP大模型论文:清华大学提出IFT对齐算法,打破SFT与RLHF局限性OpenAI联创:RLHF是超级智能的秘密武器全面解析霸王茶姬的激进营销:如何成为「东方星巴克」?京妞又造假了!婶可忍, 叔不可忍?(真相截图)EI会议大盘点!涵盖计算机图像视觉、机器学习等众多方向Flash Attention稳定吗?Meta、哈佛发现其模型权重偏差呈现数量级波动腾讯大模型APP真实测评!七家国产大模型“battle”,元宝顶得住吗?2024年大模型潜力方向:大浪淘沙后的SFT和RLHF斯坦福让“GPU高速运转”的新工具火了,比FlashAttention2更快陶大程团队联合港大等发布最新综述:374篇文献全面解析大模型知识蒸馏Ilya出走加剧OpenAI离职潮!RLHF作者Jan Leike同日辞职,超级对齐项目分崩离析北京内推 | ​AMD北京AI算法团队招聘大语言模型算法实习生女主播卖车送福利;假提豪车;普利司通的忧伤;医美直播凉凉模型偏好只与大小有关?上交大全面解析人类与32种大模型偏好的定量组分需要什么才能成为春天英国私家小众包团4-7人9天7晚游:伦敦+剑桥+爱丁堡+格特纳格林+温德米尔+曼彻斯特+斯特拉福德+牛津大学 LHRLHR9V剑桥提出RLHF平替方案:在SFT以外,我们还能拿SFT数据做什么?深圳内推 | 百度⽂⼼(ERNIE)团队招聘⼤模型算法实习⽣突发!谷歌 Python 团队全体被裁,Flutter 团队也“在劫难逃”百花迎春礼赞中华科研实习 | 南方科技大学-香港中文大学(深圳)联合招收大语言模型算法实习生
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。