储能方法详解
储能的核心是实现能量在时间和空间上的移动,本质上是让能量更加可控。我们 把各种发电方式的本质归一化,可以发现:火电、核电、生物质发电天然就有相 应的介质进行能量的存储,并且介质适宜进行贮存和运输,即本身就配置了储能 功能。而对于水力发电、风力发电、光热发电、光伏发电而言,发电借助的来源 是瞬时的、不可贮存和转运的。相应地,如果我们想让这些能源更加可控,必须 人为的添加储能装置。可以理解为,储能装置的添加,会使得水力、风力、光伏、 光热成为更理想的发电形式。
发电侧与电网侧一直承担着让能量更可控的任务,储能将作为一种方式提供灵活 性资源。在抽水蓄能大建设、新型储能兴起之前,电网的灵活性资源更多的需要 火电提供。而目前,在一个优质的电网存在的情况下,系统的灵活性调节资源是 由抽水蓄能、新型储能、火电等共同提供的。此时,建设抽水蓄能和新型储能的 节奏,要评估两个方面:(1)从经济性维度上,建设抽水蓄能、建设新型储能 与进行火电灵活性改造何者最优;(2)从需求量维度上,火电灵活性改造存在 存量机组数量约束、抽水蓄能存在地理资源约束,这两大约束会在什么时间点成 为掣肘因素。
储能可以让分布式光伏发电更“优质”,使其有成为家庭用电主力的可能。储能 的应用使得用户侧“自发自用”成为了可能,在一个更多偏向于盈利属性的电网 环境下,储能加持下的分布式光伏发电更加“优质”。此时,分布式光储的推进 核心变成了经济性考量:光储发电的成本与从电网买电的价格孰高孰低。在没有可靠电力保障的情况下,储能是正常生活的刚需。储能装置储存的是能量, 而充足的能源是保障生活正常进行的必要需求。而在户外、偏远地区,在有战争 可能的地区,在电网保障不足的地区,从生存与避险的角度讲,配置储能是最基 本的需求。此处储能推进的核心是:正常家庭能否负担得起一套储能设备,或者 一套光储系统。
储能技术特点及降本情况各不相同,根据应用场景的不同,长时储能技术将呈现 多线并举的格局。概括而言,长时储能技术可分为机械储能、储热和化学储能三 大主线。其中,机械储能包括抽水蓄能、压缩空气储能;储热主要为熔盐储热;化学储能包括锂离子电池储能、钠离子电池储能以及液流电池储能。
2.1、抽水蓄能:当前最成熟、度电成本最低的储能技术
2.1.1、原理:依靠水的重力势能作为介质储能
抽水蓄能仍然是当前最成熟、装机最多的主流储能技术。抽水蓄能是机械储能的 一种:在电力负荷低谷期将水从下池水库抽到上池水库时将电能转化成重力势能 储存起来,在负荷高峰时利用反向水流发电,综合效率在 70%到 85%之间。
2.1.2、优劣势:储能技术成熟,但选址受限、开发周期较长
优势:当前最成熟的储能技术,度电成本最低。根据《储能技术全生命周期度电 成本分析》(文军等,2021 年)中测算,在不考虑充电成本且折现率为 0 的情 况下,抽水蓄能仅有 0.207 元/kWh 的度电成本,在各种储能技术中度电成本最 低。劣势 1:地理资源约束明显,远期来看无法足量的满足储能需求。虽然抽水蓄能 不具有化学电池易老化和储能容量限制的问题,但是它对于地理因素的要求较 高,一般来说只能建造在山与丘陵存在的地方,上下水库要求存在于较近的距离 内,并有着较高的高度差。并且在高度差不明显的条件下,抽水蓄能电站所能达 到的能量密度相对有限。
劣势 2:初始投资成本高、开发建设时间长,在风光建设超预期的时候,储能资 源无法及时匹配。抽水蓄能电站的建造成本较高、开发周期约 7 年。根据《抽水 蓄能电站建设与运营模式思考》(孙晓新,2020 年)数据,一个 120 万千瓦的 电站通常需要 60-80 亿元的投资。根据《溧阳抽水蓄能电站工程设计变更与优化》 (李建军等,2018 年)溧阳抽水蓄能电站建设周期约为 7 年,主体工程于 2011 年 4 月开工建设,2017 年 10 月 11 日最后第 6 台机组投产发电,工程全部竣工 投产。
2.2、压缩空气储能:效率提升下,极具前景的大规模储能技术
2.2.1、原理:依靠高压气体作为介质储能
压缩空气储能系统是一种能够实现大容量、长时间电能储蓄的电力储能系统。通 过压缩空气存储多余的电能,在需要时,将高压气体释放到膨胀机做功发电。传 统压缩空气储能技术原理脱胎于燃气轮机,其工作流程为:压缩、储存、加热、 膨胀、冷却。当前压缩空气技术以中温蓄热式压缩空气储能为主。中温技术将压缩空气加热到 200-300℃,温度越高,转换效率就越高,最新压缩空气储能的电转换效率可以 达到 60-70%。但高温对压缩机等设备材料的要求更高,当前产业化方向以中温 为主。
2.2.2、优劣势:已摆脱地理约束,但当前效率相对较低
优势 1:随着技术的进步,可以通过储气罐的形式存储压缩气体,从而摆脱了地 理约束,可以大规模上量。传统的压缩空气储能需要借助特定的地理条件建造大 型储气室,如岩石洞穴、盐洞、废弃矿井等,从而大大限制了压缩空气储能系统 的应用范围。当前随着技术的进步,可以通过建设大型储气罐来进行存储。优势 2:单位成本相对较低。设备成本占系统成本的大部分,存在着随着大规模 应用快速降本的可能。劣势:整个系统的效率相对来说仍在较低的水平。当前涉及运行的项目效率在 50%-70%之间,较成熟的抽水蓄能的 76%左右还有一定的差距,这一定程度上 影响了整个项目的经济性。
2.3、锂离子电池:优秀的中短时储能技术同样适用于部分长时场景
2.3.1、优劣势:储能技术较为成熟,但锂资源约束明显
优势 1:锂电池储能是当前技术最为成熟、装机规模最大的电化学储能技术。根 据中关村储能数据,2021 年锂离子电池占中国新型储能装机量的 89.7%,是最 具代表性的新型储能技术,目前广泛应用于 1-2 小时的中短时储能场景中,在 4-8 小时的储能项目中也有应用。
劣势 1:锂离子电池提供功率与贮存能量的装置绑定在一起,在不提升功率,仅 提升容量的情况下,电池成本等比例增加。即 4 小时储能系统的电池成本是 1 小时储能系统的 4 倍。而抽水蓄能、压缩空气、液流电池、熔融盐等储能方式, 均可以实现功率装置和能量装置的解耦,若单纯增加储能时间,仅需等比例配置 贮存能量的装置即可。劣势 2:随着全球电池需求量的迅速增长,锂资源开始面临着资源约束问题。一 方面是锂资源的总量分布有限,地壳丰度仅为 0.006%;另一方面是锂资源的空间 分布不均匀,锂矿主要分布在澳洲、南美地区,根据美国地质勘探局 2021 年报 告,我国锂资源储量仅占全球 6%,且开采成本较高,现在的电池生产用锂对外 依存度过高。同时,锂资源约束还带来锂资源在动力电池和储能电池间分配的问 题。
锂资源的供需紧张也使得 2021 年以来,锂资源大幅涨价,锂电池成本持续上升。根据 wind 数据,与 2021 年 1 月 1 日价格相比,最高点 2022 年 3 月 22 日碳酸 锂价格上涨 849%,氢氧化锂价格上涨 883%。
2.4、钠离子电池:与锂电类似,但无资源约束的储能方式
2.4.1、原理:与锂离子电池类似
钠离子电池与锂离子电池的工作原理类似,为嵌脱式电池。充电时,Na+从正极 脱嵌,进入负极;放电时,Na+从负极回到正极,外电路电子从负极进入正极, 将 Na+还原为 Na。
2.4.2、优劣势:更低的理论成本,更低的循环寿命
优势:与锂资源相比,钠资源储量非常丰富,所以在大规模应用的场景下,钠离 子电池没有明显的资源约束。而且,钠离子电池的正极材料、集流体材料的理论 成本比锂电更低,在完成产业化降本之后,其初始投资成本有望较锂电更低。劣势:在电池性能上,由原理所决定的,钠离子电池的循环寿命和储能效率低于 锂离子电池。钠离子电池循环寿命提升速度较快,2018 年商业化初期钠离子电 池循环寿命在 2000 次左右,2020 年底胡勇胜研究团队研究出了循环寿命达到 4500 次的钠离子电池。但是当前主流的锂离子电池储能,循环寿命更高,2021 年,宁德时代研制出循环寿命超过 12000 次的锂离子电池。
2.5、液流电池:功率与容量解耦的电化学储能方式
2.5.1、原理:依靠氧化还原液流电池进行储能
液流电池是一种大规模高效电化学储能装置。区别于其他电池储能装置,液流电 池将反应活性物质储存于电解质溶液中,可实现电化学反应与能量储存场所的分 离,使得电池功率与储能容量设计相对独立,适合大规模蓄电储能需求。目前典 型液流电池体系包括全钒液流电池、铁铬液流电池、锌溴液流电池、多硫化钠/ 溴电池等。
全钒液流电池
全钒液流电池(Vanadium Redox Battery,VRB),是一种活性物质呈循环流 动液态的氧化还原电池。通过两个不同化合价的、被隔膜隔开的钒离子之间交换 电子来实现电能与化学能的相互转化。钒电池充电后,正极为 V5+,负极为 V2+;放电后,正负极分别为 V4+和 V3+溶液。正极和负极之间由隔膜隔开,该隔膜只 允许 H+通过,,H+也就起到了电池内部导电的作用。
铁铬液流电池
铁铬液流电池(Iron-chromium flow battery),是最早被提出的液流电池体系。铁铬电池充电后,正极为 Fe3+,负极为 Cr2+;放电后,正极为 Fe2+,负极为 Cr3+。盐酸作为支持电解质,水为溶剂。
2.5.2、优劣势:容量、功率独立设计,规模易扩展,但成本较高
优势 1:在长时储能中,液流电池最大的优势为输出功率和储能容量可分开设计。通过增加单片电池的数量和电极面积,即可增加液流电池的功率,目前中国商业 化示范运行的钒电池的功率已达 5MW。通过增加电解液的体积或提高电解液的 浓度,即可任意增加液流电池的电量,可达百兆瓦时以上。优势 2:循环寿命长。由于液流电池的正、负极活性物质只分别存在于正、负极 电解液中,充放电时无其它电池常有的物相变化,可深度放电而不损伤电池,电 池使用寿命长。劣势:成本问题是当前液流电池最大的劣势。全钒液流电池当前的产业化进程较 快,但是面临着钒资源约束的问题;铁铬液流电池没有明显的资源约束问题,但 是当前产业化推进相对较慢。
全钒液流电池
根据 Y.K. Zeng 的《A comparative study of all-vanadium and iron-chromium redox flow batteries for large-scale energy storage》测算,储能时长为 8h 的 情况下,电解液的价值量占比 53%,隔膜的价值量占比 19%,石墨毡价值量占 比 5%,泵价值量占比 4%,功率转换系统价值量占比 12%。
铁铬液流电池
2019 年以来,铁铬液流电池商业化进程逐渐加快。2019 年,中国国家电投集团 科学技术研究院有限公司研发的首个 31.25KW 铁铬液流电池电堆(容和一号) 成功下线。2020 年,中国国家电投集团开发的 250KW/1.5MWh 铁铬液流电池 在河北省张家口市光储示范项目中正式投产运行,是我国首个百千瓦级的铁铬液 流电池储能项目。
2.6、熔盐储热:光热电站的配储系统
2.6.1、原理:依靠熔盐介质储存热能
熔盐储热通过储热介质的温度变化、相态变化或化学反应,实现热能的储存与释 放。储热介质吸收电能、辐射能等能量,储蓄在介质内,当环境温度低于介质温 度时,储热介质可将热能释放出来。熔盐储热是大规模中高温储热的主流技术方向。储热技术可分为显热储热、相变 储热和热化学储热三类。目前,显热储热技术成熟度最高、价格较低、应用较为 广泛;潜热储热是研究热点;而热化学储热尚未成熟。其中,熔融盐为常用的中 高温显热储热介质,具备较宽的液体温度范围,储热温差大、储热密度高,适合 大规模中高温储热项目。
2.6.2、优劣势:热发电场景中的储能介质
优势:熔盐作为储热介质,成本较低,工作状态稳定,储热密度高,储热时间长, 适合大规模中高温储热,单机可实现 100MWh 以上的储热容量。劣势:能量转换方式决定了熔盐储热只有应用在热发电的场景下才会有经济优 势。熔盐是通过储存热量的方式来储存能量的,如果需要储存的是电能,那整个 流程中需要完成“电能——热能——电能”的转换,效率很低。因此,熔盐储能 只能应用在采用热能发电的场景中,作为能量的存储介质,如光热发电、火电厂 改造等;或者应用在终端能量需求为热能而非电能的场景,如清洁供热。
(1)光热发电:熔盐储热将储热和传热介质合为一体,简化电站系统组成。作 为光热发电的配套储能设施,熔盐储热系统可提高太阳能的利用率,减少功率波 动,促进电网稳定输出。(2)清洁供热:熔盐储热系统的热能利用效率高,可实现余热、废热的回收利 用,为工业园区的食品加工、纺织等企业提供稳定持续的蒸汽、热风等高品质热 源。(3)火电厂改造:在火电厂加装熔盐储热设备,可将其改造为储能调峰电站, 灵活输出电力,储热可转化成蒸汽为用户供热,提高电厂经济效益。
3.3.1、最便宜的长时储能:抽水蓄能、压缩空气、锂离子电池储能
在考虑充电成本情况下,抽水蓄能和压缩空气储能技术最为经济,而锂离子电池 储能为现阶段度电成本最低的电化学储能技术,钠离子电池和液流电池度电成本 较高。
3.3.2、压缩空气:效率提升至65%时,经济性有望超过抽水蓄能
随储能效率提升,压缩空气储能技术的度电成本将持续下降,有望超过抽水蓄能, 成为最经济的大规模储能技术。进行敏感性分析,初始投资成本为 1.4 元/Wh 时,假设储能效率提升至 70%/75%/80%,考虑充电电价的度电成本可下降至 0.834/0.806/0.782 元/kWh。目前,张家口 100MW/400MWh 先进压缩空气储 能系统的设计效率已达到 70.4%,后续可持续观测其运营情况。
3.3.3、锂离子电池:锂价回落后,仍是比较经济的长时储能方案
随产业化进程加速和原材料价格回落,锂离子储能初始投资成本有望逐步下降, 将提升其储能经济性。进行敏感性分析,储能效率为 88%时,假设 10MW/50MWh 锂离子电池储能系统的初始投资成本降至 1.5/1.2/1.0(元/Wh)时,考虑充电电价 的度电成本为 1.081/0.966/0.890 元/kWh。
3.3.4、液流电池:初始投资成本和储能效率是两大掣肘因素
随产业化进程加速,液流电池储能的初始投资成本有望下降,其储能效率逐步上 升,将进一步改善液流电池的度电成本。进行敏感性分析,储能效率为 75%时, 假设 10MW/50MWh 液流电池储能系统的初始投资成本降至 2.5/2.0/1.5 (元 /Wh)时,考虑充电电价的度电成本将下降为 1.293/1.132/0.971 元/kWh。
3.3.5、钠离子电池:极致降本后,可作为比较经济的长时储能方案
随产业化进程加速,钠离子电池储能初始投资成本有望逐步下降,大幅提升其储 能经济性。进行敏感性分析,储能效率为 80%时,假设 10MW/50MWh 钠离子 电池储能系统的初始投资成本降至 1.6/1.3/1.0 (元/Wh)时,考虑充电电价的度电成本为 1.263/1.153/1.044 元/kWh。当初始投资成本下降至 1.3(元/Wh)时, 度电成本将低于当前锂离子电池。