z*3
3 楼
mongodb的话据说要把整个index都读入内存?
还是cassandra吧
还是cassandra吧
z*3
4 楼
目测了一下,nosql主要选择是cassandra和hbase
前者是facebook的东东,后者是waterloo和hadoop的东东
mongodb貌似已经落伍
网络上可以找到大量的nosql war cassandra vs hbase的文章
hadoop我看了下,还有大幅提升的空间
现在的机制还是太过于复杂,spring可以对hadoop做一定的优化
这些东西绝大多数都还在0.x和1.x版
普遍不太成熟,还有不少路要走
前者是facebook的东东,后者是waterloo和hadoop的东东
mongodb貌似已经落伍
网络上可以找到大量的nosql war cassandra vs hbase的文章
hadoop我看了下,还有大幅提升的空间
现在的机制还是太过于复杂,spring可以对hadoop做一定的优化
这些东西绝大多数都还在0.x和1.x版
普遍不太成熟,还有不少路要走
k*e
6 楼
Cassandra 爱好者前来围观。 无限可扩容。
p*c
7 楼
Thanks
看来都不喜欢mango啊,呵呵。我主要是看了点教程,发现mongodb仿佛很简单,几下就
配置好,可以写程序了。
Cassandra我到datastax下载了他们的enterprise server,安好,跑了个demo,发现和
mongo很多不一样
看来都不喜欢mango啊,呵呵。我主要是看了点教程,发现mongodb仿佛很简单,几下就
配置好,可以写程序了。
Cassandra我到datastax下载了他们的enterprise server,安好,跑了个demo,发现和
mongo很多不一样
t*e
8 楼
这3个之中,哪个可以做OLTP,哪个适合做OLAP?
t*a
9 楼
我喜欢mongo, 够简单,数据拿出来直接是json
和ror整合的也好,scala/java的driver也不错
缺点大家也说了,就是这厮对内存喜欢多吃多占,而且如果它内存如果抢不过别人,
performance就急剧下降,但这策略也挺和我胃口的。。。现在我们mongodb的server就
只装mongdb,内存就随它搞吧。。。。
【在 p***c 的大作中提到】
: Thanks
: 看来都不喜欢mango啊,呵呵。我主要是看了点教程,发现mongodb仿佛很简单,几下就
: 配置好,可以写程序了。
: Cassandra我到datastax下载了他们的enterprise server,安好,跑了个demo,发现和
: mongo很多不一样
和ror整合的也好,scala/java的driver也不错
缺点大家也说了,就是这厮对内存喜欢多吃多占,而且如果它内存如果抢不过别人,
performance就急剧下降,但这策略也挺和我胃口的。。。现在我们mongodb的server就
只装mongdb,内存就随它搞吧。。。。
【在 p***c 的大作中提到】
: Thanks
: 看来都不喜欢mango啊,呵呵。我主要是看了点教程,发现mongodb仿佛很简单,几下就
: 配置好,可以写程序了。
: Cassandra我到datastax下载了他们的enterprise server,安好,跑了个demo,发现和
: mongo很多不一样
w*z
12 楼
是,mongo 就存json ,容易上手。Cassandra 是column family +row ,一开始比较难理
解。1.2还弄一个cql 3,very confusing and misleading for the new starters. it
is dangerous to think of Cassandra in a rdbms way.
【在 t***a 的大作中提到】
: 我喜欢mongo, 够简单,数据拿出来直接是json
: 和ror整合的也好,scala/java的driver也不错
: 缺点大家也说了,就是这厮对内存喜欢多吃多占,而且如果它内存如果抢不过别人,
: performance就急剧下降,但这策略也挺和我胃口的。。。现在我们mongodb的server就
: 只装mongdb,内存就随它搞吧。。。。
解。1.2还弄一个cql 3,very confusing and misleading for the new starters. it
is dangerous to think of Cassandra in a rdbms way.
【在 t***a 的大作中提到】
: 我喜欢mongo, 够简单,数据拿出来直接是json
: 和ror整合的也好,scala/java的driver也不错
: 缺点大家也说了,就是这厮对内存喜欢多吃多占,而且如果它内存如果抢不过别人,
: performance就急剧下降,但这策略也挺和我胃口的。。。现在我们mongodb的server就
: 只装mongdb,内存就随它搞吧。。。。
g*g
16 楼
Cassandra is fast, but you need to plan your query.
p*2
18 楼
CouchDB是啥情况呀?
t*e
22 楼
Think about a scenario at amazon.com, when a pricing error occurs, the
amount of txns jacks up with anomaly against a single item. Obviously,
overnight data analysis/mining doesn't help. There must be a real-time, big
data analytic process to quickly remove the item from listing.
Does Cassandra or HBase fit this use case?
.
【在 w**z 的大作中提到】
: depends on what you want to do. think of Cassandra as a big hash table,
: value is a list of columns (name value pair again ) ordered by column name.
amount of txns jacks up with anomaly against a single item. Obviously,
overnight data analysis/mining doesn't help. There must be a real-time, big
data analytic process to quickly remove the item from listing.
Does Cassandra or HBase fit this use case?
.
【在 w**z 的大作中提到】
: depends on what you want to do. think of Cassandra as a big hash table,
: value is a list of columns (name value pair again ) ordered by column name.
F*n
23 楼
Because the DB is too good, Amazon received tons of orders at the wrong
prices.
On the other hand, my crappy server could have refused those connections
with no problem:))
big
【在 t*******e 的大作中提到】
: Think about a scenario at amazon.com, when a pricing error occurs, the
: amount of txns jacks up with anomaly against a single item. Obviously,
: overnight data analysis/mining doesn't help. There must be a real-time, big
: data analytic process to quickly remove the item from listing.
: Does Cassandra or HBase fit this use case?
:
: .
prices.
On the other hand, my crappy server could have refused those connections
with no problem:))
big
【在 t*******e 的大作中提到】
: Think about a scenario at amazon.com, when a pricing error occurs, the
: amount of txns jacks up with anomaly against a single item. Obviously,
: overnight data analysis/mining doesn't help. There must be a real-time, big
: data analytic process to quickly remove the item from listing.
: Does Cassandra or HBase fit this use case?
:
: .
e*t
24 楼
not very familiar with hbase, but cassandra would be fine in this scenario.
Cassandra have very good write performance, for read, the performance depend
s on the consistency level you need.
In your use case, the consistency doesn't matter much.
big
【在 t*******e 的大作中提到】
: Think about a scenario at amazon.com, when a pricing error occurs, the
: amount of txns jacks up with anomaly against a single item. Obviously,
: overnight data analysis/mining doesn't help. There must be a real-time, big
: data analytic process to quickly remove the item from listing.
: Does Cassandra or HBase fit this use case?
:
: .
Cassandra have very good write performance, for read, the performance depend
s on the consistency level you need.
In your use case, the consistency doesn't matter much.
big
【在 t*******e 的大作中提到】
: Think about a scenario at amazon.com, when a pricing error occurs, the
: amount of txns jacks up with anomaly against a single item. Obviously,
: overnight data analysis/mining doesn't help. There must be a real-time, big
: data analytic process to quickly remove the item from listing.
: Does Cassandra or HBase fit this use case?
:
: .
g*g
25 楼
This fits to monitoring instead. And many existing tools can tell you a
particular url/service is hot.
big
【在 t*******e 的大作中提到】
: Think about a scenario at amazon.com, when a pricing error occurs, the
: amount of txns jacks up with anomaly against a single item. Obviously,
: overnight data analysis/mining doesn't help. There must be a real-time, big
: data analytic process to quickly remove the item from listing.
: Does Cassandra or HBase fit this use case?
:
: .
particular url/service is hot.
big
【在 t*******e 的大作中提到】
: Think about a scenario at amazon.com, when a pricing error occurs, the
: amount of txns jacks up with anomaly against a single item. Obviously,
: overnight data analysis/mining doesn't help. There must be a real-time, big
: data analytic process to quickly remove the item from listing.
: Does Cassandra or HBase fit this use case?
:
: .
t*e
26 楼
Machine learning/data mining tools can do the job. Screening spam is another
use case, but much simpler. The challenge lies in the aggregate function.
To make ad hoc queries relying on an aggregate function that touches the
entire datastore real-time is really tough, if not impractical.
【在 g*****g 的大作中提到】
: This fits to monitoring instead. And many existing tools can tell you a
: particular url/service is hot.
:
: big
use case, but much simpler. The challenge lies in the aggregate function.
To make ad hoc queries relying on an aggregate function that touches the
entire datastore real-time is really tough, if not impractical.
【在 g*****g 的大作中提到】
: This fits to monitoring instead. And many existing tools can tell you a
: particular url/service is hot.
:
: big
相关阅读
How to compute round-trip time to webser怎么在application实现delay?这个方法到底如何调用的?Re: multiple source/output path in JBuilmultiple source/output path in JBuilder9问一个题Anyone used JESS?servlet programming 怪问题谁用过 BlueJ ? 有什么好和不好的地方self-modifying code?如何复制一个二维数组?Weblogic的CVS问题Swing helpa simple parser for config files...请教!有何种工具开发jsp更有效,对于初学者?Which IDE is good in Linux?A question of NetbeansWho can help for DFS search program?A simple questionOracle之JDBC问题