Redian新闻
>
以前见过的一道初中(或小学)数学题, 没有想出来... (转载)
avatar
以前见过的一道初中(或小学)数学题, 没有想出来... (转载)# Joke - 肚皮舞运动
h*o
1
把leetcode 和cc150复习一下够吗?
avatar
l*u
2
我这是说的数据都是官方数据。
https://travel.state.gov/content/visas/en/law-and-policy/statis
2015年财年烙印,EB 485数量为27,334, FB 485数据为16,481,总计43,815.远超单
个国家每年的配额25.620.
Section 201 of the Immigration and Nationality Act (INA) sets an annual
minimum family-sponsored preference limit of 226,000. The worldwide level
for annual employment-based preference immigrants is at least 140,000.
Section 202 prescribes that the per-country limit for preference immigrants
is set at 7% of the total annual family-sponsored and employment-based
preference limits, i.e., 25,620.
反观2015年中国, EB 485 数量21,889, FB 485 数据为15,019, 总计36,908,比印
度少差不多7000。
2014年财年烙印,EB 485数量为40,859, FB 485数据为15,034,总计55,893.远超单
个国家每年的配额25.620,都两倍当个国家配额。
2014年中国, EB 485 数量22,641, FB 485 数据为15,393, 总计38,034,比印度少
了接近18000。
在两个国家FB每年基本都用完配额(15,820)的情况下,为何烙印每年EB 485 可以那
么多?????
avatar
n*6
3
【 以下文字转载自 JobHunting 讨论区 】
发信人: woshimajia66 (马甲), 信区: JobHunting
标 题: 以前见过的一道初中(或小学)数学题, 没有想出来...
发信站: BBS 未名空间站 (Wed Aug 7 16:51:48 2013, 美东)
2*4*6*8*10*......*96*98*100 + 1 这个数是质数吗?
如果是,请说为什么,如果不是,找出一个因子~
avatar
j*6
4
做过两个
第一个是很基本的选择题
第二次是一个很简单的算法题 一个算法改错题
其实如果c++ ok的话 真的不用担心 都很简单
加油
avatar
s*t
5
现在政策是所有国家没用完的 split over 都给烙印
所以我一直觉得 最根本推进ebc的方法还是要改变这个现在的政策,这个政策完全是政
府政策,没有任何法律规定必须如此,也应该是不用复杂的立法流程就可以改的。而从
根本上它在违背绿卡国家配额的立法精神
如果反过来 烙印在老中的位置 每年给老中多于烙印的绿卡 烙印早就游说改革了 而不
是忍着,天天猜还剩多少名额和奥本的心思
avatar
H*g
6
这种题我就猜个是质数。
avatar
s*e
7
online题目很基础,没什么好说的。
电面会考C++的内存模型。建议看看Inside C++ Object Model
avatar
s*t
8
现在政策是所有国家没用完的 split over 都给烙印
所以我一直觉得 最根本推进ebc的方法还是要改变这个现在的政策,这个政策完全是政
府政策,没有任何法律规定必须如此,也应该是不用复杂的立法流程就可以改的。而从
根本上它在违背绿卡国家配额的立法精神
如果反过来 烙印在老中的位置 每年给老中多于烙印的绿卡 烙印早就游说改革了 而不
是忍着,天天猜还剩多少名额和奥本的心思
avatar
X*r
9
显然能被三整除啊。

【在 n******6 的大作中提到】
: 【 以下文字转载自 JobHunting 讨论区 】
: 发信人: woshimajia66 (马甲), 信区: JobHunting
: 标 题: 以前见过的一道初中(或小学)数学题, 没有想出来...
: 发信站: BBS 未名空间站 (Wed Aug 7 16:51:48 2013, 美东)
: 2*4*6*8*10*......*96*98*100 + 1 这个数是质数吗?
: 如果是,请说为什么,如果不是,找出一个因子~

avatar
N*t
10
我下个星期二面,Recuriter发给我一段C++的程序,说到时候会跟Interviewer讨论这
代码。
我一直用的是Java,不怎么用C++,用Java回答会有问题吗?
avatar
n*r
11
楼主能不能策划一下,我们肯定支持行动!
avatar
b*a
12
我擦,前面都乘过6,12,18这些了,再加一还能被3整除?

【在 X****r 的大作中提到】
: 显然能被三整除啊。
avatar
s*s
13
请问你收到的C++是关于那方面的代码?Inheritance? Recursive?

【在 N******t 的大作中提到】
: 我下个星期二面,Recuriter发给我一段C++的程序,说到时候会跟Interviewer讨论这
: 代码。
: 我一直用的是Java,不怎么用C++,用Java回答会有问题吗?

avatar
y*0
14
吃的spillover

immigrants

【在 l**********u 的大作中提到】
: 我这是说的数据都是官方数据。
: https://travel.state.gov/content/visas/en/law-and-policy/statis
: 2015年财年烙印,EB 485数量为27,334, FB 485数据为16,481,总计43,815.远超单
: 个国家每年的配额25.620.
: Section 201 of the Immigration and Nationality Act (INA) sets an annual
: minimum family-sponsored preference limit of 226,000. The worldwide level
: for annual employment-based preference immigrants is at least 140,000.
: Section 202 prescribes that the per-country limit for preference immigrants
: is set at 7% of the total annual family-sponsored and employment-based
: preference limits, i.e., 25,620.

avatar
n*b
15
发信人: woshimajia66 (马甲), 信区: JobHunting
标 题: Re: 以前见过的一道初中(或小学)数学题, 没有想出来...
发信站: BBS 未名空间站 (Wed Aug 7 17:44:39 2013, 美东)
烙印太TM狠了,问我这种题目,CAO!

【在 n******6 的大作中提到】
: 【 以下文字转载自 JobHunting 讨论区 】
: 发信人: woshimajia66 (马甲), 信区: JobHunting
: 标 题: 以前见过的一道初中(或小学)数学题, 没有想出来...
: 发信站: BBS 未名空间站 (Wed Aug 7 16:51:48 2013, 美东)
: 2*4*6*8*10*......*96*98*100 + 1 这个数是质数吗?
: 如果是,请说为什么,如果不是,找出一个因子~

avatar
h*o
16
recruiter said C++ OR Java. so I think u can use Java.

【在 N******t 的大作中提到】
: 我下个星期二面,Recuriter发给我一段C++的程序,说到时候会跟Interviewer讨论这
: 代码。
: 我一直用的是Java,不怎么用C++,用Java回答会有问题吗?

avatar
y*r
17
我们不够团结
avatar
r*g
18
79
avatar
h*o
19
你是第几轮了?

【在 h**o 的大作中提到】
: recruiter said C++ OR Java. so I think u can use Java.
avatar
s*a
20
FB+EB老印多,不过中国有很多政避绿卡的,而老印基本没有,总数上好像还是中国多
一些。
avatar
m*f
21
真扯 a

【在 X****r 的大作中提到】
: 显然能被三整除啊。
avatar
M*r
22
请问那段代码是考改错和优化吗?店面完了是不是就onsite了呢?这家的考题有什么特
点吗?

【在 s***e 的大作中提到】
: online题目很基础,没什么好说的。
: 电面会考C++的内存模型。建议看看Inside C++ Object Model

avatar
c*3
23
当年要求中印松绑闹的结果,现在又要改回去,估计有点难
现在三哥们参政的更多了,而且加上每年都有近2万庇护,中国总人数比印度多,都没
好的理由。
avatar
n*b
24
厉害阿

【在 r*********g 的大作中提到】
: 79
avatar
l*u
25
这就是我的问题:
同样吃spillover, 问和中国能够分到的不够多而烙印那么多?

【在 y******0 的大作中提到】
: 吃的spillover
:
: immigrants

avatar
X*r
26
不好意思,看错了。是能被51整除。
威尔逊定理,p-1的阶乘除以p余一。
这个定理不知道的话本身也很好证。

【在 b*****a 的大作中提到】
: 我擦,前面都乘过6,12,18这些了,再加一还能被3整除?
avatar
l*u
27
只有FB+EB 有名额限制,其他的不算visa number。
我这里就是讨论visa number到底怎么分配的问题。

【在 s*******a 的大作中提到】
: FB+EB老印多,不过中国有很多政避绿卡的,而老印基本没有,总数上好像还是中国多
: 一些。

avatar
M*8
28
那也能被3和17整除?

【在 X****r 的大作中提到】
: 不好意思,看错了。是能被51整除。
: 威尔逊定理,p-1的阶乘除以p余一。
: 这个定理不知道的话本身也很好证。

avatar
c*3
29
关键要找到合适理由去争取分点SO
光说移民多样性没用,加庇护后总量比印度多,要找其它合理理由才行

【在 l**********u 的大作中提到】
: 只有FB+EB 有名额限制,其他的不算visa number。
: 我这里就是讨论visa number到底怎么分配的问题。

avatar
n*b
30
可他又乘了2^50又加了1阿

【在 X****r 的大作中提到】
: 不好意思,看错了。是能被51整除。
: 威尔逊定理,p-1的阶乘除以p余一。
: 这个定理不知道的话本身也很好证。

avatar
y*0
31
Allocation of “otherwise unused” numbers in accordance with Immigration
and Nationality Act (INA) Section 202(a)(5)
INA Section 202(a)(5) provides that if total demand in a calendar quarter
will be insufficient to use all available numbers in an Employment
preference, then the unused numbers may be made available without regard to
the annual per-country limits.
Since under INA Section 203(e) such numbers must be provided strictly in
priority date order regardless of chargeability, greater number use by one
country would indicate greater demand by applicants from that country with
earlier priority dates.

【在 l**********u 的大作中提到】
: 这就是我的问题:
: 同样吃spillover, 问和中国能够分到的不够多而烙印那么多?

avatar
H*g
32
51=17x3吧

【在 X****r 的大作中提到】
: 不好意思,看错了。是能被51整除。
: 威尔逊定理,p-1的阶乘除以p余一。
: 这个定理不知道的话本身也很好证。

avatar
y*0
33
BACKGROUND INFORMATION ON FREQUENTLY MISUNDERSTOOD POINTS
Applicants entitled to immigrant status become documentarily qualified at
their own initiative and convenience. By no means has every applicant with a
priority date earlier than a prevailing cut-off date been processed for
final visa action. On the contrary, a significant amount of demand is
received each month for applicants who have priority dates which are
significantly earlier than the applicable cut-off dates. In addition,
fluctuations in demand can cause cut-off date movement to slow, stop, or
even retrogress. Retrogression is particularly possible near the end of the
fiscal year as visa issuance approaches the annual limitations.
Per-country limit: The annual per-country limitation of 7% is a cap which
visa issuances to any single country may not exceed. Applicants compete for
visas primarily on a worldwide basis. The country limitation serves to avoid
monopolization of virtually all the annual limitation by applicants from
only a few countries. This limitation is not a quota to which any particular
country is entitled, however.
Applicability of Section 202(a)(5): INA Section 202(a)(5), added by the
American Competitiveness in the 21st Century Act, removed the per-country
limit on Employment-based immigrants in any calendar quarter in which
applicant demand for numbers in one or more Employment-based preferences is
less than the total of such numbers available. In recent years, the
application of Section 202(a)(5) has allowed countries such as China –
mainland born and India to utilize large amounts of Employment First and
Second preference numbers which would have otherwise gone unused. Such
numbers are provided strictly in priority date order without regard to the
foreign state chargeability, and the same cut-off date applies to any
country benefiting from this provision.
Applicability of Section 202(e): When visa demand by documentarily qualified
applicants from a particular country exceeds the amount of numbers
available under the annual numerical limitation, that country is considered
to be oversubscribed. Oversubscription may require the establishment of an
earlier cut-off date than that which applies to a particular visa category
on a worldwide basis. The prorating of numbers for an oversubscribed country
follows the same percentages specified for the division of the worldwide
annual limitation among the preferences. (Note that visa availability cut-
off dates for oversubscribed areas may not be later than worldwide cut-off
dates, if any, for the respective preferences.)
Furthermore, Section 202(a)(2) reads, “2) Per country levels for family-
sponsored and employment-based immigrants. Subject to paragraphs (3), (4),
and (5), the total number of immigrant visas made available to natives of
any single foreign state or dependent area under subsections (a) and (b) of
section 203 in any fiscal year may not exceed seven percent (in the case of
a single foreign state) or two percent (in the case of a dependent area) of
the total number of such visas made available under such subsections in that
fiscal year.” The seven percent per-country limit specified in INA 202(a)(
2) is considered to be for both Family-sponsored and Employment-based
numbers combined.
Allocation of visa numbers under Section 202(e) is accomplished as follows:
1. If based on historical patterns or current demand it appears that
during a fiscal year number use by aliens chargeable to a particular country
will exceed the per-country numerical limit for both the Family and
Employment preferences combined, that country would be considered
oversubscribed. Both the Family and Employment preferences would be subject
to the prorating provisions of INA 202(e)(1).
2. Sometimes during a fiscal year it may become apparent that because of
a lack of demand in the Family preferences, number use by aliens chargeable
to an oversubscribed country will be well within the per-country numerical
limit. In such case the excess Family numbers would be made available to the
Employment preferences subject to the prorating provisions of INA 202(e)(1)
. Each of the first three Employment categories would receive 28.6% of the
excess numbers, and each of the Fourth and Fifth preference categories 7.1%.
(Fall-across would likewise apply if an oversubscribed country lacked
sufficient demand in the Employment preferences but had excess demand in the
Family preferences.)
If a foreign state other than an oversubscribed country has little Family
preference demand but considerable Employment preference demand, the
otherwise unused Family numbers fall across to Employment (and vice versa)
for purposes of that foreign state’s annual numerical limit.
For example, in FY-2009 South Korea used a grand total of 15,899 Family and
Employment preference numbers, of which 1,688 were Family numbers and 14,211
were Employment numbers. This grand total was well within the FY-2009 per-
country numerical limit of 25,620 Family and Employment numbers combined, so
South Korea was not oversubscribed. The unused Family numbers were
distributed within the Employment categories, allowing South Korea to be
considerably over the 9,800 Employment limit which would have been in effect
had it been an oversubscribed country.
avatar
a*r
34
103
avatar
n*b
35
好像不对
79好像是对的

【在 a*******r 的大作中提到】
: 103
avatar
b*a
36
这个数是 2^50*50!+1
怎么套这个破定理?
原题其实是个 well known 的 GMAT 题,人本来问得是,如果 p 是这个数的最小质因
数,那么 p 在哪个范围
选项有 <10, 10-20, 20-30, 30-40, >40
显然选 E
但是真让分解质因数就不是一般人能做的了吧

【在 X****r 的大作中提到】
: 不好意思,看错了。是能被51整除。
: 威尔逊定理,p-1的阶乘除以p余一。
: 这个定理不知道的话本身也很好证。

avatar
X*r
37
靠,51不是质数,想岔了。

【在 H********g 的大作中提到】
: 51=17x3吧
avatar
X*r
38
如果p是大于2的质数,那2^(p-1)除以p余1(费尔马小定理),(p-1)!除以p余-1(威尔
逊定理),所以2^(p-1)*(p-1)!+1能被p整除。
当然,51不是质数,所以这些都没用…

【在 b*****a 的大作中提到】
: 这个数是 2^50*50!+1
: 怎么套这个破定理?
: 原题其实是个 well known 的 GMAT 题,人本来问得是,如果 p 是这个数的最小质因
: 数,那么 p 在哪个范围
: 选项有 <10, 10-20, 20-30, 30-40, >40
: 显然选 E
: 但是真让分解质因数就不是一般人能做的了吧

avatar
m*f
39
looks like no obvious pattern?
>>> factors(1 + 2)
[]
>>> factors(1 + 2 * 4)
[3]
>>> factors(1 + 2 * 4 * 6)
[7]
>>> factors(1 + 2 * 4 * 6 * 8)
[5, 7, 11]
>>> factors(1 + 2 * 4 * 6 * 8 * 10)
[23]
>>> factors(1 + 2 * 4 * 6 * 8 * 10 * 12)
[7, 29, 203]
>>> factors(1 + 2 * 4 * 6 * 8 * 10 * 12 * 14)
[167]
>>> factors(1 + 2 * 4 * 6 * 8 * 10 * 12 * 14 * 16)
[19]
>>> factors(1 + 2 * 4 * 6 * 8 * 10 * 12 * 14 * 16 * 18)
[29, 173, 841, 1277, 5017]
>>> factors(1 + 2 * 4 * 6 * 8 * 10 * 12 * 14 * 16 * 18 * 20)
[11, 23, 151, 253, 529, 1661, 3473, 4229, 5819, 38203, 46519]
>>> factors(1 + 2 * 4 * 6 * 8 * 10 * 12 * 14 * 16 * 18 * 20 * 22)
[109, 9421, 79609]
>>> factors(1 + 2 * 4 * 6 * 8 * 10 * 12 * 14 * 16 * 18 * 20 * 22 * 24)
[13, 92413, 1201369]
>>> factors(1 + 2 * 4 * 6 * 8 * 10 * 12 * 14 * 16 * 18 * 20 * 22 * 24 * 26)
[163, 193, 31459]
>>> factors(1 + 2 * 4 * 6 * 8 * 10 * 12 * 14 * 16 * 18 * 20 * 22 * 24 * 26 *
28)
[31, 37, 1147]
>>> factors(1 + 2 * 4 * 6 * 8 * 10 * 12 * 14 * 16 * 18 * 20 * 22 * 24 * 26 *
28 * 30)
[67, 409, 1151, 27403, 77117, 470759, 31540853]
avatar
y*1
40
在新蛋买过几次东西,都不爽。
你确定这个题是小学的?
3 3
9 3*3
49 7*7
385 5*7*11
3841 23 * 167
46081 7 * 29 * 227
645121 167 * 3863
10321921 19 * 543259
185794561 29 * 29 * 173 * 1277
3715891201 11 * 23 * 23 * 151 * 422
81749606401 109 * 9421 * 79609

【在 n******6 的大作中提到】
: 【 以下文字转载自 JobHunting 讨论区 】
: 发信人: woshimajia66 (马甲), 信区: JobHunting
: 标 题: 以前见过的一道初中(或小学)数学题, 没有想出来...
: 发信站: BBS 未名空间站 (Wed Aug 7 16:51:48 2013, 美东)
: 2*4*6*8*10*......*96*98*100 + 1 这个数是质数吗?
: 如果是,请说为什么,如果不是,找出一个因子~

avatar
b*a
41
brute force 得算小学的,lol

【在 y******1 的大作中提到】
: 在新蛋买过几次东西,都不爽。
: 你确定这个题是小学的?
: 3 3
: 9 3*3
: 49 7*7
: 385 5*7*11
: 3841 23 * 167
: 46081 7 * 29 * 227
: 645121 167 * 3863
: 10321921 19 * 543259

avatar
m*o
42
In[3]:= (2^50 50! + 1)/79
Out[3]= 43345854053812628162337256829377450601416044371796454212551461\
3461873417721519
In[6]:= FactorInteger[Out[3]]
Out[6]= {{179, 1}, {40243333194650166662539,
1}, {60172851008118822045702963426274510210057447929035999, 1}}
撸神太牛了
avatar
h*k
43
自从有了电脑,很多问题都可以穷举解决了,人类智商也下降了,当然干活效率提高了
相关阅读
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。