avatar
诺委会太不像话了# Joke - 肚皮舞运动
l*p
1
CVS是12-13周,
抽血查唐式,B超查唐式也是在那个时候吧。要是先做这样,就错过做CVS的时间了。
但是CVS总有一定风险。如何选择,要不要问问OB呢?
avatar
r*s
2
尼玛87篇参考文献就不能加一篇施教授或能教授的CNS?
References
1. Ruska, E., Nobel Lectures, Physics 1981-1990, Tore Frängsmyr and
Gösta Ekspong, Eds. (1993) World Scientific Publishing, Singapore
2. Marton, L. (1934) Electron microscopy of biological objects. Nature
133, 911-911
3. Althoff, T., Mills, D. J., Popot, J. L., and Kühlbrandt, W. (2011)
Arrangement of electron transport chain components in bovine mitochondrial
supercomplex I1III2IV1. The EMBO Journal 30, 4652-4664
4. Letts, J. A., Fiedorczuk, K., and Sazanov, L. A. (2016) The
architecture of respiratory supercomplexes.
Nature 537, 644-648
5. Hall, C. E., Jakus, M. A., and Schmitt, F. O. (1945) The structure of
certain muscle fibrils as revealed by the use of electron stains. J. Applied
Physics 16, 459-465
6. Brenner, S., and Horne, R. W. (1959) A negative staining method for
high resolution electron microscopy of viruses. Biochim. Biophys. Acta 34,
103-110
7. Huxley, H. E., and Zubay, G. (1961) Preferential staining of nucleic
acid-containing structures for electron microscopy. J. Biophys. Biochem.
Cytology 11, 273-296
8. Klug, A., and Finch, J. T. (1965) Structure of viruses of the
papilloma-polyoma type. I. human wart.
J. Mol. Biol. 11, 403-423
9. Klug, A., and Berger, J. E. (1964) An optical method for the analysis
of periodicities in electron. J. Mol. Biol. 10, 565-569
10. Klug, A., and De Rosier, D. J. (1966) Optical filtering of electron
micrographs: reconstruction of one- sided images. Nature 212, 29-32
11. Erickson, H. P., and Klug, A. (1970) The Fourier transform of an
electron micrograph: effects of defocussing and aberrations, and
implications for the use of underfocus contrast enhancement. Berichte der
Bunsengesellschaft für physikalische Chemie 74, 1129-1137
12. Hoppe, W., Langer, R., Knesch, G., and Poppe, C. (1968) Protein-
kristallstrukturanalyse mit elektronenstrahlen. Naturwissenschaften 55, 333-
336
13. Hoppe, W., Gassmann, J., Hunsmann, N., Schramm, H. J., and Sturm, M.
(1974) Three dimensional reconstruction of individual negatively stained
yeast fatty acid synthetase molecules from tilt series in the electron
microscope. Hoppe-Seyler's Z. Physiol. Chem. 355, 1483-1487
14. DeRosier, D. J., and Klug, A. (1968) Reconstruction of three
dimensional structures from electron micrographs. Nature 217, 130-134
15. Crowther, R. A., Amos, L. A., Finch, J. T., DeRosier, D. J., and Klug
, A. (1970) Three dimensional reconstructions of spherical viruses by
Fourier synthesis from electron micrographs. Nature 226, 421- 425
16. Crowther, R. A., DeRosier, D. J., and Klug, A. (1970) The
reconstruction of a three-dimensional structure from projections and its
application to electron microscopy. Proc. R. Soc. London. A 317, 319-340
17. Parsons, D. F. (1974) Structure of wet specimens in electron
microscopy. Improved environmental chambers make it possible to examine wet
specimens easily. Science 186, 407-414
18. Matricardi, V. R., Moretz, R. C., and Parsons, D. F. (1972) Electron
diffraction of wet proteins: catalase.
Science 177, 268-270
19. Glaeser, R. M. (1971) Limitations to significant information in
biological electron microscopy as a result of radiation damage. J.
Ultrastruct. Res. 36, 466-482
20. Frank, J. (1975) Averaging of low exposure electron micrographs of
non-periodic objects.
Ultramicroscopy 1, 159-162
21. Kuo, I. A. M., and Glaeser, R. M. (1975) Development of methodology
for low exposure, high resolution electron microscopy of biological
specimens. Ultramicroscopy 1, 53-66
22. Unwin, P. N. T., and Henderson, R. (1975) Molecular structure
determination by electron microscopy of unstained crystalline specimens. J.
Mol. Biol. 94, 425-432
23. Henderson, R., and Unwin, P. N. T. (1975) Three-dimensional model of
purple membrane obtained by electron microscopy. Nature 257, 28-32
24. Erickson, H. P., and Klug, A. (1971) Measurement and compensation of
defocusing and aberrations by fourier processing of electron micrographs.
Philos. Trans. R. Soc., B 261, 105-118
25. Fernández-Morán, H. (1960) Low-temperature preparation techniques
for electron microscopy of biological specimens based on rapid freezing with
liquid Helium II. In Annals of the New York Academy of Sciences 85, 689-713
26. Schmidt, P. J. (2006) Basile J. Luyet and the beginnings of
transfusion cryobiology. Transfusion Medicine Reviews 20, 242-246
27. Haas, D. J. (1968) X-ray studies on lysozyme crystals at–50° C.
Acta Cryst. B 24, 604-604
28. Haas, D. J., and Rossmann, M. G. (1970) Crystallographic studies on
lactate dehydrogenase at-75 degrees C. Acta Crystallogr B 26, 998-1004
29. Taylor, K. A., and Glaeser, R. M. (1974) Electron diffraction of
frozen, hydrated protein crystals.
Science 186, 1036-1037
30. Taylor, K. A., and Glaeser, R. M. (1976) Electron microscopy of
frozen hydrated biological specimens.
J. Ultrastruct. Res. 55, 448-456
31. Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, F., Beckmann, E.
, and Downing, K. H. (1990) Model for the structure of bacteriorhodopsin
based on high-resolution electron cryo-microscopy. J. Mol. Biol. 213, 899-
929
32. Kühlbrandt, W., Wang, D. N., and Fujiyoshi, Y. (1994) Atomic model
of plant light-harvesting complex by electron crystallography. Nature 367,
614-621
33. Wang, D. N., and Kühlbrandt, W. (1991) High-resolution electron
crystallography of light-harvesting chlorophyll ab-protein complex in three
different media. J. Mol. Biol. 217, 691-699
34. Nogales, E., Wolf, S. G., and Downing, K. H. (1998) Structure of the
αβ tubulin dimer by electron crystallography. Nature 391, 199-203
35. Murata, K., Mitsuoka, K., Hiral, T., Walz, T., Agre, P., Heymann, J.
B., Engel, A., and Fujiyoshi, Y. (2000) Structural determinants of water
permeation through aquaporin-1. Nature 407, 599-605
36. Glaeser, R. M. (1999) Review: Electron crystallography: present
excitement, a nod to the past, anticipating the future. J. Struct. Biol. 128
, 3-14
37. Henderson, R. (1995) The potential and limitations of neutrons,
electrons and X-rays for atomic resolution microscopy of unstained
biological molecules. Q. Rev. Biophys. 28, 171-193
38. Merk, A., Bartesaghi, A., Banerjee, S., Falconieri, V., Rao, P.,
Davis, M. I., Pragani, R., Boxer, M. B., Earl, L. A., Milne, J. L. S., and
Subramaniam, S. (2016) Breaking cryo-EM resolution barriers to facilitate
drug discovery. Cell 165, 1698-1707
39. Khoshouei, M., Radjainia, M., Baumeister, W., and Danev, R. (2017)
Cryo-EM structure of haemoglobin at 3.2 Å determined with the Volta
phase plate. Nature Comm. 8, 16099
40. Rosenthal, P. B., and Henderson, R. (2003) Optimal determination of
particle orientation, absolute hand, and contrast loss in single-particle
electron cryomicroscopy. J. Mol. Biol. 333, 721-745
41. Saxton, W. O., and Frank, J. (1977) Motif detection in quantum noise-
limited electron micrographs by cross-correlation. Ultramicroscopy 2, 219-
227
42. Frank, J., and Al-Ali, L. (1975) Signal-to-noise ratio of electron
micrographs obtained by cross correlation. Nature 256, 376-379
43. Frank, J., Goldfarb, W., Eisenberg, D., and Baker, T. S. (1978)
Reconstruction of glutamine synthetase using computer averaging.
Ultramicroscopy 3, 283-290
44. van Heel, M., and Frank, J. (1981) Use of multivariates statistics in
analysing the images of biological macromolecules. Ultramicroscopy 6, 187-
194
45. Frank, J., and van Heel, M. (1982) Correspondence analysis of aligned
images of biological particles.
J. Mol. Biol. 161, 134-137
46. Radermacher, M., Wagenknecht, T., Verschoor, A., and Frank, J. (1986)
A new 3D reconstruction scheme applied to the 50s ribosomal subunit of E.
coli. J. Microsc. 141, RP1-RP2
47. Radermacher, M., Wagenknecht, T., Verschoor, A., and Frank, J. (1987)
Three-dimensional reconstruction from a single-exposure, random conical
tilt series applied to the 50S ribosomal subunit of Escherichia coli. J.
Microsc. 146, 113-136
48. Radermacher, M. (1980) Dreidimensionale Rekonstruktion bei kegelf
246;rmiger Kippung im Elektronenmikroskop. Thesis, Technical University,
Munich.
49. Frank, J., and Shimkin, B. (1978) A new image processing software
system for structural analysis and contrast enhancement. In: Proc. 9th
Intern. Congr. on Electron Microscopy, Ed. J.M. Sturgess (Microscopical Soc.
Canada, Toronto, Ontario, 1978) I, 210
50. Frank, J., Shimkin, B., and Dowse, H. (1981) SPIDER-A modular
software system for electron image processing. Ultramicroscopy 6, 343-357
51. Burton, E. F., and Oliver, W. F. (1935) X-Ray diffraction patterns of
ice. Nature 135, 505-506
52. Dowell, L. G., and Rinfret, A. P. (1960) Low-temperature forms of ice
as studied by X-ray diffraction.
Nature 188, 1144-1148
53. Brüggeller, P., and Mayer, E. (1980) Complete vitrification in pure
liquid water and dilute aqueous solutions. Nature 288, 569-571
54. Jenniskens, P., and Blake, D. F. (1994) Structural transitions in
amorphous water ice and astrophysical implications. Science 265, 753-756
55. Dubochet, J., Adrian, M., Chang, J.-J., Homo, J.-C., Lepault, J.,
McDowall, A. W., and Schultz, P. (1988) Cryo-electron microscopy of
vitrified specimens. Q. Rev. Biophys. 21, 129-228
56. Dubochet, J., and McDowall, A. W. (1981) Vitrification of pure water
for electron microscopy.
J. Microsc. 124, 3-4
57. Adrian, M., Dubochet, J., Lepault, J., and McDowall, A. W. (1984)
Cryo-electron microscopy of viruses.
Nature 308, 32-36
58. Lepault, J., Booy, F. P., and Dubochet, J. (1983) Electron microscopy
of frozen biological suspensions.
J. Microsc. 129, 89-102
59. Dubochet, J., Chang, J. J., Freeman, R., Lepault, J., and McDowall, A
. W. (1982) Frozen aqueous suspensions. Ultramicroscopy 10, 55-61
60. Dubochet, J., Lepault, J., Freeman, R., Berriman, J. A., and Homo, J.
C. (1982) Electron microscopy of frozen water and aqueous solutions. J.
Microsc. 128, 219-237
61. Dubochet, J., Adrian, M., Lepault, J., and McDowall, A. W. (1985)
Emerging techniques: Cryo-electron microscopy of vitrified biological
specimens. Trends Biochem. Sci. 10, 143-146
62. Faruqi, A. R., Cattermole, D. M., and Raeburn, C. (2003) Direct
electron detection methods in electron microscopy. Nuclear Instruments and
Methods in Physics Research, A 513, 317-321
63. Faruqi, A. R., Henderson, R., Pryddetch, M., Allport, P., and Evans,
A. (2005) Direct single electron detection with a CMOS detector for electron
microscopy. Nuclear Instruments and Methods in Physics Research, A 546, 170
-175
64. Xuong, N. H., Milazzo, A. C., Leblanc, P., Duttweiler, F., Bouwer, J.
, Peltier, S., Ellisman, M., Denes, P., Bieser, F., Matis, H. S., Wieman, H.
, and Kleinfelder, S. (2004) First use of a high sensitivity active pixel
sensor array as a detector for electron microscopy. In Proceedings of SPIE -
the International Society for Optical Engineering
65. Milazzo, A. C., Leblanc, P., Duttweiler, F., Jin, L., Bouwer, J. C.,
Peltier, S., Ellisman, M., Bieser, F., Matis, H. S., Wieman, H., Denes, P.,
Kleinfelder, S., and Xuong, N. H. (2005) Active pixel sensor array as a
detector for electron microscopy. Ultramicroscopy 104, 152-159
66. McMullan, G., Faruqi, A. R., and Henderson, R. (2016) Direct
electrondetectors. In Methods in Enzymology (Crowther, R. A. ed.), Academic
Press. pp 1-17
67. Li, X., Mooney, P., Zheng, S., Booth, C. R., Braunfeld, M. B.,
Gubbens, S., Agard, D. A., and Cheng, Y. (2013) Electron counting and beam-
induced motion correction enable near-atomic-resolution single- particle
cryo-EM. Nature Methods 10, 584-590
68. McMullan, G., Clark, A. T., Turchetta, R., and Faruqi, A. R. (2009)
Enhanced imaging in low dose electron microscopy using electron counting.
Ultramicroscopy 109, 1411-1416
69. Brilot, A. F., Chen, J. Z., Cheng, A., Pan, J., Harrison, S. C.,
Potter, C. S., Carragher, B., Henderson, R., and Grigorieff, N. (2012) Beam-
induced motion of vitrified specimen on holey carbon film. J. Struct. Biol.
177, 630-637
70. Campbell, M. G., Cheng, A., Brilot, A. F., Moeller, A., Lyumkis, D.,
Veesler, D., Pan, J., Harrison, S. C., Potter, C. S., Carragher, B., and
Grigorieff, N. (2012) Movies of ice-embedded particles enhance resolution in
electron cryo-microscopy. Structure 20, 1823-1828
71. Ripstein, Z. A., and Rubinstein, J. L. (2016) Processing of cryo-EM
movie data. In Methods in Enzymology 579, 103-124
72. Rubinstein, J. L., and Brubaker, M. A. (2015) Alignment of cryo-EM
movies of individual particles by optimization of image translations. J.
Struct. Biol. 192, 188-195
73. Heide, H. G. (1982) Design and operation of cold stages.
Ultramicroscopy 10, 125-154
74. Danev, R., Buijsse, B., Khoshouei, M., Plitzko, J. M., and Baumeister
, W. (2014) Volta potential phase plate for in-focus phase contrast
transmission electron microscopy. Proc. Natl. Acad. Sci. USA 111, 15635-
15640
75. Suloway, C., Pulokas, J., Fellmann, D., Cheng, A., Guerra, F., Quispe
, J., Stagg, S., Potter, C. S., and Carragher, B. (2005) Automated molecular
microscopy: The new Leginon system. J. Struct. Biol. 151, 41-60
76. Sigworth, F. J. (1998) A maximum-likelihood approach to single-
particle image refinement. J. Struct. Biol. 122, 328-339
77. Scheres, S. H. W., Gao, H., Valle, M., Herman, G. T., Eggermont, P. P
. B., Frank, J., and Carazo, J. M. (2007) Disentangling conformational
states of macromolecules in 3D-EM through likelihood optimization. Nature
Methods 4, 27-29
78. Liao, M., Cao, E., Julius, D., and Cheng, Y. (2013) Structure of the
TRPV1 ion channel determined by electron cryo-microscopy. Nature 504, 107-
112
79. Beck, M., and Baumeister, W. (2016) Cryo-electron tomography: can it
reveal the molecular sociology of cells in atomic detail? Trends Cell Biol.
26, 825-837
80. Oikonomou, C. M., and Jensen, G. J. (2017) Cellular electron
cryotomography: toward structural biology in situ. Annu. Rev. Biochem. 86,
873-896
81. Rubinstein, J. L. (2017) Cryo-EM captures the dynamics of ion channel
opening. Cell 168, 341-343
82. Fischer, N., Konevega, A. L., Wintermeyer, W., Rodnina, M. V., and
Stark, H. (2010) Ribosome dynamics and tRNA movement by time-resolved
electron cryomicroscopy. Nature 466, 329-333
83. Hite, R. K., and MacKinnon, R. (2017) Structural titration of Slo2.2,
a Na+-dependent K+ channel. Cell
168, 390-399
84. Zhao, J., Benlekbir, S., and Rubinstein, J. L. (2015) Electron
cryomicroscopy observation of rotational states in a eukaryotic V-ATPase.
Nature 521, 241-245
85. Dashti, A., Ben Hail, D., Mashayekhi, G., Schwander, P., des Georges,
A., Frank, J., and Ourmazd, A. (2017) Conformational dynamics and energy
landscapes of ligand binding in RyR1. bioRxiv, DOI: 10.1101/167080
86. Dashti, A., Schwander, P., Langlois, R., Fung, R., Li, W.,
Hosseinizadeh, A., Liao, H. Y., Pallesen, J., Sharma, G., Stupina, V. A.,
Simon, A. E., Dinman, J. D., Frank, J., and Ourmazd, A. (2014) Trajectories
of the ribosome as a Brownian nanomachine. Proc. Natl. Acad. Sci. USA 111,
17492-17497
87. Kühlbrandt, W. (2014) The resolution revolution. Science 343, 1443-
1444
avatar
l*g
3
直接做羊穿。羊穿是更晚一些做,16-24周,相对更安全些。
avatar
l*y
4
本来要写的,结果一公一母紧急跳出来写装逼文,惹怒诺委会给删了:叫你丫一天发
science,啪啪啪
avatar
t*z
5
多大算大龄阿,过30么
avatar
t*y
6
没施老师能老师几亿几亿地下单买,说不定这玩意儿也没那么快拿诺奖吧
avatar
s*3
7
应该听OB的。
avatar
r*z
8
外行问问,施和颜的科研到底什么性质的,有实验方法和理论思想上的革新吗?还是只
是拼仪器精密程度?
话说能拿到几亿几亿的经费也是本事吧。

【在 t*******y 的大作中提到】
: 没施老师能老师几亿几亿地下单买,说不定这玩意儿也没那么快拿诺奖吧
avatar
L*y
9
听医生怎么说
avatar
d*f
10
你上过学么?中学生物课第一节课看草履虫上过么?20年后两位教授的研究就能普及到
这个水平

【在 r****z 的大作中提到】
: 外行问问,施和颜的科研到底什么性质的,有实验方法和理论思想上的革新吗?还是只
: 是拼仪器精密程度?
: 话说能拿到几亿几亿的经费也是本事吧。

avatar
z*x
11
这个绝对要听ob建议的
avatar
t*y
12
我也是外行锁男,我猜可能和列文虎克时候看显微镜的差不多?要列文虎克时候有
Nature,估计随便找个细胞照张相就能上Nature封面

【在 r****z 的大作中提到】
: 外行问问,施和颜的科研到底什么性质的,有实验方法和理论思想上的革新吗?还是只
: 是拼仪器精密程度?
: 话说能拿到几亿几亿的经费也是本事吧。

avatar
r*d
13
我37,医生还是让先做B超+blood work(12周),然后根据几率决定是否做CVS.
http://www.TickerFactory.com/">
http://tickers.TickerFactory.com/ezt/d/1;20718;6/st/20110824/k/5d7f/preg.png">
avatar
H*g
14
集邮

【在 r****z 的大作中提到】
: 外行问问,施和颜的科研到底什么性质的,有实验方法和理论思想上的革新吗?还是只
: 是拼仪器精密程度?
: 话说能拿到几亿几亿的经费也是本事吧。

avatar
C*a
15


【在 l**p 的大作中提到】
: CVS是12-13周,
: 抽血查唐式,B超查唐式也是在那个时候吧。要是先做这样,就错过做CVS的时间了。
: 但是CVS总有一定风险。如何选择,要不要问问OB呢?

avatar
H*g
16
确实有几个是生物结构paper 所以一公那个剪切体结构应该也合格的

【在 l****y 的大作中提到】
: 本来要写的,结果一公一母紧急跳出来写装逼文,惹怒诺委会给删了:叫你丫一天发
: science,啪啪啪

avatar
d*e
17
听OB的
avatar
n*4
18
一眼瞄去里面还是有几个汉人的

【在 r*s 的大作中提到】
: 尼玛87篇参考文献就不能加一篇施教授或能教授的CNS?
: References
: 1. Ruska, E., Nobel Lectures, Physics 1981-1990, Tore Frängsmyr and
: Gösta Ekspong, Eds. (1993) World Scientific Publishing, Singapore
: 2. Marton, L. (1934) Electron microscopy of biological objects. Nature
: 133, 911-911
: 3. Althoff, T., Mills, D. J., Popot, J. L., and Kühlbrandt, W. (2011)
: Arrangement of electron transport chain components in bovine mitochondrial
: supercomplex I1III2IV1. The EMBO Journal 30, 4652-4664
: 4. Letts, J. A., Fiedorczuk, K., and Sazanov, L. A. (2016) The

avatar
H*g
19
yifan cheng是很重要的 没他那个paper cryoEM还得晚两年热
不过最重要的还是2004和2006那两个提出用CMOS器件做照相机的

【在 n****4 的大作中提到】
: 一眼瞄去里面还是有几个汉人的
avatar
n*4
20
一教授的成就是什么,用一两句话怎么说,

【在 H********g 的大作中提到】
: yifan cheng是很重要的 没他那个paper cryoEM还得晚两年热
: 不过最重要的还是2004和2006那两个提出用CMOS器件做照相机的

avatar
H*g
21
第一个演示了怎么用冰冻电镜解出来比较小的膜蛋白的高分辨率结构 之前没人做到过

【在 n****4 的大作中提到】
: 一教授的成就是什么,用一两句话怎么说,
avatar
H*g
22
ref. 78

到过

【在 H********g 的大作中提到】
: 第一个演示了怎么用冰冻电镜解出来比较小的膜蛋白的高分辨率结构 之前没人做到过
avatar
d*f
23
所以就使演示了怎么在虎克显微镜下面放切片?

到过

【在 H********g 的大作中提到】
: 第一个演示了怎么用冰冻电镜解出来比较小的膜蛋白的高分辨率结构 之前没人做到过
avatar
H*g
24
这里头还是很有些技术的 考虑到你想看三五埃的细节 就得让那么大一坨铁的运动不
超过三五埃
当然 当年虎克和列文虎克(之一?)自己做显微镜 也是极牛叉的 好像怎么做透镜
是他的独家秘密 维持技术壁垒到他死掉
这些其实都是物理索南 跟我们集邮学的比 高几个档次

【在 d********f 的大作中提到】
: 所以就使演示了怎么在虎克显微镜下面放切片?
:
: 到过

avatar
H*g
25
第一个演示还是极其牛逼的 你不演示出来 别人怎么跟风呢 风都没有跟个啥呢

【在 d********f 的大作中提到】
: 所以就使演示了怎么在虎克显微镜下面放切片?
:
: 到过

avatar
H*g
26
这个图,时间分界点为啥在2013年呢,因为Yifan Cheng那个结构是2013年
avatar
d*f
27
我没有说不牛b,一筐现在怎么也是索南里的0.1%了,怎么会不niub

【在 H********g 的大作中提到】
: 第一个演示还是极其牛逼的 你不演示出来 别人怎么跟风呢 风都没有跟个啥呢
avatar
H*g
28
我说的可不是一筐 我说这个叫yifan cheng 在ucsf

【在 d********f 的大作中提到】
: 我没有说不牛b,一筐现在怎么也是索南里的0.1%了,怎么会不niub
avatar
H*g
29
所以中国人在拉丁字母的世界极其吃亏 谁是谁根本分不清 日本人也差不多 我就
记不住日本人的名字

【在 H********g 的大作中提到】
: 我说的可不是一筐 我说这个叫yifan cheng 在ucsf
avatar
d*f
30
靠。吹了半天一筐连切片怎么放还是和人学的?

【在 H********g 的大作中提到】
: 我说的可不是一筐 我说这个叫yifan cheng 在ucsf
avatar
d*f
31
名字要简短,比如马云的知名度就比马化滕高多了。再比如说成龙李小龙比真子弹就好
记多了。各位给娃其名字切忌。我看那些翻字典其名字的就觉得好笑

【在 H********g 的大作中提到】
: 所以中国人在拉丁字母的世界极其吃亏 谁是谁根本分不清 日本人也差不多 我就
: 记不住日本人的名字

avatar
H*g
32
他原本不是这行的 第一回说五米外看馒头那回 实际是他出馒头 英国MRC的人给他
照的像
不过后来发的剪切体结构确实有点水平 这回应该是完全自己独立做的 我国各方面都
很落后 学得快其实是正路

【在 d********f 的大作中提到】
: 靠。吹了半天一筐连切片怎么放还是和人学的?
avatar
n*4
33
那这个离诺奖的差距确实挺大的。你看发给的物理奖,LIGO的装置4公里长的臂,由于
引力波,造成了不到中子直径千分之一的变化,这个探测出来了才拿的奖。相当于从地
球到比邻星,就是三体舰队出发的地方,这么长的距离,探测出了不到一根头发丝直径
的变化。

【在 H********g 的大作中提到】
: 这里头还是很有些技术的 考虑到你想看三五埃的细节 就得让那么大一坨铁的运动不
: 超过三五埃
: 当然 当年虎克和列文虎克(之一?)自己做显微镜 也是极牛叉的 好像怎么做透镜
: 是他的独家秘密 维持技术壁垒到他死掉
: 这些其实都是物理索南 跟我们集邮学的比 高几个档次

avatar
H*g
34
这是怎么量的?gamma射线波长也没这么短吧?

【在 n****4 的大作中提到】
: 那这个离诺奖的差距确实挺大的。你看发给的物理奖,LIGO的装置4公里长的臂,由于
: 引力波,造成了不到中子直径千分之一的变化,这个探测出来了才拿的奖。相当于从地
: 球到比邻星,就是三体舰队出发的地方,这么长的距离,探测出了不到一根头发丝直径
: 的变化。

avatar
n*4
35
大致上就是把差异不断无噪声地放大,然后用干涉法使之变成条纹

【在 H********g 的大作中提到】
: 这是怎么量的?gamma射线波长也没这么短吧?
avatar
H*g
36
除了干涉法,还有啥别的办法量小于原子半径的长度?没法量咋放大?

【在 n****4 的大作中提到】
: 大致上就是把差异不断无噪声地放大,然后用干涉法使之变成条纹
avatar
n*4
37
要是样品不是活的话,主要用的是散射的办法,就是卢瑟福发明的,用高能量的粒子束
去轰,然后测量散射截面。原子大部分质量集中于中心一小块,其余万分之九九九都是
空的。以及中子和质子的质量集中于中心一小块,其余万分之九九九都是空的,全是用
这种办法量出来的。生物样品应该没法轰,所以我估计除了有限的电镜外,这个分辨率
应该是到头了

【在 H********g 的大作中提到】
: 除了干涉法,还有啥别的办法量小于原子半径的长度?没法量咋放大?
avatar
H*g
39
https://physics.stackexchange.com/questions/235865/how-are-the-4-km-arms-of-
ligo-measured-so-accurately
It is a misconception that LIGO is a very accurate instrument, it has an
uncertainty in calibration which is on the order of 10%. This means that the
measured strain amplitude of GW150914 of 1.0⋅10−211.0⋅10&
#8722;21 could easily have been 1.1⋅10−211.1⋅10−21.
Note that this is just a scaling error.
LIGO is however extremely sensitive, it can measure relative length
variations on the order of 10−2210−22, but only in a bandwidth
between 10 and 2000 Hz. At lower frequencies, the measurement fluctuates by
several orders of magnitude more. You need to do band-pass filtering to
reveal the actual signal.

【在 H********g 的大作中提到】
: 拿10e-7m波长的光去量10e-18m的变形
: http://gphys.obspm.fr/journee2016/pdf/Tacca.pdf

avatar
a9
40
人叫pony ma

我就

【在 d********f 的大作中提到】
: 名字要简短,比如马云的知名度就比马化滕高多了。再比如说成龙李小龙比真子弹就好
: 记多了。各位给娃其名字切忌。我看那些翻字典其名字的就觉得好笑

avatar
a9
41
关键还得去噪声
关键还得测出来强度变化,画出波形


动不
透镜

【在 n****4 的大作中提到】
: 那这个离诺奖的差距确实挺大的。你看发给的物理奖,LIGO的装置4公里长的臂,由于
: 引力波,造成了不到中子直径千分之一的变化,这个探测出来了才拿的奖。相当于从地
: 球到比邻星,就是三体舰队出发的地方,这么长的距离,探测出了不到一根头发丝直径
: 的变化。

avatar
V*e
42
avatar
d*f
43
这不是挺大的八,根本就是哥德巴赫和作业本上的1+1把。

【在 n****4 的大作中提到】
: 那这个离诺奖的差距确实挺大的。你看发给的物理奖,LIGO的装置4公里长的臂,由于
: 引力波,造成了不到中子直径千分之一的变化,这个探测出来了才拿的奖。相当于从地
: 球到比邻星,就是三体舰队出发的地方,这么长的距离,探测出了不到一根头发丝直径
: 的变化。

相关阅读
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。