s*v
2 楼
各位半导体大拿,看看这个news,Intel最新的半导体技术,3D芯片。难怪,INTC最近
如此的低
调,原来在做这个,小看它了。成本会如何啊?
如此的低
调,原来在做这个,小看它了。成本会如何啊?
y*5
3 楼
3D packaging 在工业界都用了很多年了吧
s*v
4 楼
Intel's New Tri-Gate Ivy Bridge Transistors: 9 Things You Need to Know
ARTICLE DATE: 05.04.11
By Matthew Murray
Intel announced today that its upcoming Ivy Bridge processing
platform, which will be based on a 22-nm version of its second-
generation Core (aka Sandy Bridge) microarchitecture, will also
utilize a new transistor technology called Tri-Gate.
The company says that Tri-Gate transistors, the first to be truly
three-dimensional, mark a major change in the way the industry has
done things for 40 years, and could revolutionize it. Here's a quick
glimpse at some of the most important facts and figures about Tri-Gate
transistors, and what they will mean for PCs in 2011 and beyond.
1.) Tri-Gate explained. The Tri-Gate technology gets its name from the
fact that transistors using it have conducting channels that are
formed on all three sides—two on each side, one across the top—of a
tall and narrow silicon fin that rises vertically from the silicon
substrate. On a traditional two-dimensional, or "planar," transistor,
the gate runs just across the top. But on the vertical fin,
transistors can be packed closer together. This provides enough extra
control to allow more transistor current to flow when the transistor
is on, almost zero when it is off, and gives the transistor the
ability to switch quickly between the two states. This maximizes both
power usage and performance.
2.) Why? According to Intel, Tri-Gate was implemented because it would
not have been possible to continue Moore's law at 22nm and below
without a major transistor redesign. With Tri-Gate transistors, Intel
claims to have extended Moore's law at least another two years.
3.) How small is it? A nanometer is one-billionth of an inch. That
means that more than 6 million 22nm Tri-Gate transistors could be
crammed into the period at the end of this sentence. By contrast, a
human hair is approximately 100,000 nanometers wide.
4.) How much? (And how little?) Intel estimates that Tri-Gate
transistors are 37 percent faster than those used in the current 32nm
process and will effect an active power reduction of more than 50
percent, but will only add 2 to 3 percent to the cost of a finished
wafer.
5.) Some upgrades required. Intel will need to make upgrades to its
factories over 2011 and 2012 to get them ready for producing the large
quantities of 22-nm chips necessary to drive its many devices for the
near future. (To give you an idea of the scale, Intel's factories
currently produce about five billion transistors every second—or 150
quadrillion per year.) The company says, however, that the actual
changes being implemented will not be more significant than have been
required for previous process improvements.
6.) How long will it last? Representing the latest "tick" in Intel's
two-stage development cycle (the Sandy Bridge microarchitecture was
the most recent "tock"), these Ivy Bridge innovations will be around
in some form for at least the next two years. But Intel promises that
the technology will be able to scale to its next production process,
at 14-nm, so don't be surprised if it extends well beyond that.
7.) Tri-Gate is not new. Intel research scientists first invented the
Tri-Gate in 2002, but it's taken them until now to get chips using it
ready for high-volume production.
8.) Where will you see this technology? Intel says that Ivy Bridge–
based processors are ideal for both servers and clients, the latter
particularly in thin-and-light form factors (such as desktops and
nettops), and that the technology is expected to scale to Intel's Atom
line of CPUs as well, allowing for their usage in an even broader
range of systems. But with such low power usage, smartphones, tablets,
and other mobile devices would seem to be not just possible, but
likely. (Unfortunately, Intel isn't yet saying when these will hit the
market, although devices that don't necessarily require a carrier -
such as tablets - will likely be first.)
9.) When will Ivy Bridge arrive? You can expect to see processors and
devices using them by the end of 2011, with product shipping in early
2012.
Copyright (c) 2011 Ziff Davis Inc. All Rights Reserved.
【在 s******v 的大作中提到】
: 各位半导体大拿,看看这个news,Intel最新的半导体技术,3D芯片。难怪,INTC最近
: 如此的低
: 调,原来在做这个,小看它了。成本会如何啊?
ARTICLE DATE: 05.04.11
By Matthew Murray
Intel announced today that its upcoming Ivy Bridge processing
platform, which will be based on a 22-nm version of its second-
generation Core (aka Sandy Bridge) microarchitecture, will also
utilize a new transistor technology called Tri-Gate.
The company says that Tri-Gate transistors, the first to be truly
three-dimensional, mark a major change in the way the industry has
done things for 40 years, and could revolutionize it. Here's a quick
glimpse at some of the most important facts and figures about Tri-Gate
transistors, and what they will mean for PCs in 2011 and beyond.
1.) Tri-Gate explained. The Tri-Gate technology gets its name from the
fact that transistors using it have conducting channels that are
formed on all three sides—two on each side, one across the top—of a
tall and narrow silicon fin that rises vertically from the silicon
substrate. On a traditional two-dimensional, or "planar," transistor,
the gate runs just across the top. But on the vertical fin,
transistors can be packed closer together. This provides enough extra
control to allow more transistor current to flow when the transistor
is on, almost zero when it is off, and gives the transistor the
ability to switch quickly between the two states. This maximizes both
power usage and performance.
2.) Why? According to Intel, Tri-Gate was implemented because it would
not have been possible to continue Moore's law at 22nm and below
without a major transistor redesign. With Tri-Gate transistors, Intel
claims to have extended Moore's law at least another two years.
3.) How small is it? A nanometer is one-billionth of an inch. That
means that more than 6 million 22nm Tri-Gate transistors could be
crammed into the period at the end of this sentence. By contrast, a
human hair is approximately 100,000 nanometers wide.
4.) How much? (And how little?) Intel estimates that Tri-Gate
transistors are 37 percent faster than those used in the current 32nm
process and will effect an active power reduction of more than 50
percent, but will only add 2 to 3 percent to the cost of a finished
wafer.
5.) Some upgrades required. Intel will need to make upgrades to its
factories over 2011 and 2012 to get them ready for producing the large
quantities of 22-nm chips necessary to drive its many devices for the
near future. (To give you an idea of the scale, Intel's factories
currently produce about five billion transistors every second—or 150
quadrillion per year.) The company says, however, that the actual
changes being implemented will not be more significant than have been
required for previous process improvements.
6.) How long will it last? Representing the latest "tick" in Intel's
two-stage development cycle (the Sandy Bridge microarchitecture was
the most recent "tock"), these Ivy Bridge innovations will be around
in some form for at least the next two years. But Intel promises that
the technology will be able to scale to its next production process,
at 14-nm, so don't be surprised if it extends well beyond that.
7.) Tri-Gate is not new. Intel research scientists first invented the
Tri-Gate in 2002, but it's taken them until now to get chips using it
ready for high-volume production.
8.) Where will you see this technology? Intel says that Ivy Bridge–
based processors are ideal for both servers and clients, the latter
particularly in thin-and-light form factors (such as desktops and
nettops), and that the technology is expected to scale to Intel's Atom
line of CPUs as well, allowing for their usage in an even broader
range of systems. But with such low power usage, smartphones, tablets,
and other mobile devices would seem to be not just possible, but
likely. (Unfortunately, Intel isn't yet saying when these will hit the
market, although devices that don't necessarily require a carrier -
such as tablets - will likely be first.)
9.) When will Ivy Bridge arrive? You can expect to see processors and
devices using them by the end of 2011, with product shipping in early
2012.
Copyright (c) 2011 Ziff Davis Inc. All Rights Reserved.
【在 s******v 的大作中提到】
: 各位半导体大拿,看看这个news,Intel最新的半导体技术,3D芯片。难怪,INTC最近
: 如此的低
: 调,原来在做这个,小看它了。成本会如何啊?
C*G
6 楼
我老文科F2凤凰男,野鸡看法
发信人: CYG (猪狗神 -- 五美分党), 信区: Stockcafeteria
标 题: Re: ARMH是不是到顶了?
发信站: BBS 未名空间站 (Wed May 4 15:43:10 2011, 美东)
从硬件基本物理架构角度讲,能设计并做出商业化的3D架构芯片很难,表面效应对不同
深度迁移率的影响是一个门槛,很难自洽和谐的藕合。不知道英特尔现在有批量样品了
还是实验室阶段。至少我老持怀疑态度。
其实,并没有特新的东西,3D架构喊了好几年了,真的和理论设计那么奏效谁知道?就
像把工艺尺度从65nm降下来,性能并没啥特别提高似的。终归还要看市场,看商业化程
度后的技术参数,如果苹果搞了英特尔的移动芯片基本就算盖棺定论了。
hiahia
【在 s*******r 的大作中提到】
: It is 3-D transistor, not just packaging.
发信人: CYG (猪狗神 -- 五美分党), 信区: Stockcafeteria
标 题: Re: ARMH是不是到顶了?
发信站: BBS 未名空间站 (Wed May 4 15:43:10 2011, 美东)
从硬件基本物理架构角度讲,能设计并做出商业化的3D架构芯片很难,表面效应对不同
深度迁移率的影响是一个门槛,很难自洽和谐的藕合。不知道英特尔现在有批量样品了
还是实验室阶段。至少我老持怀疑态度。
其实,并没有特新的东西,3D架构喊了好几年了,真的和理论设计那么奏效谁知道?就
像把工艺尺度从65nm降下来,性能并没啥特别提高似的。终归还要看市场,看商业化程
度后的技术参数,如果苹果搞了英特尔的移动芯片基本就算盖棺定论了。
hiahia
【在 s*******r 的大作中提到】
: It is 3-D transistor, not just packaging.
C*S
7 楼
今年下半年量产。 Search Ivy Bridge. 实验室阶段是2002年
【在 C*G 的大作中提到】
: 我老文科F2凤凰男,野鸡看法
: 发信人: CYG (猪狗神 -- 五美分党), 信区: Stockcafeteria
: 标 题: Re: ARMH是不是到顶了?
: 发信站: BBS 未名空间站 (Wed May 4 15:43:10 2011, 美东)
: 从硬件基本物理架构角度讲,能设计并做出商业化的3D架构芯片很难,表面效应对不同
: 深度迁移率的影响是一个门槛,很难自洽和谐的藕合。不知道英特尔现在有批量样品了
: 还是实验室阶段。至少我老持怀疑态度。
: 其实,并没有特新的东西,3D架构喊了好几年了,真的和理论设计那么奏效谁知道?就
: 像把工艺尺度从65nm降下来,性能并没啥特别提高似的。终归还要看市场,看商业化程
: 度后的技术参数,如果苹果搞了英特尔的移动芯片基本就算盖棺定论了。
【在 C*G 的大作中提到】
: 我老文科F2凤凰男,野鸡看法
: 发信人: CYG (猪狗神 -- 五美分党), 信区: Stockcafeteria
: 标 题: Re: ARMH是不是到顶了?
: 发信站: BBS 未名空间站 (Wed May 4 15:43:10 2011, 美东)
: 从硬件基本物理架构角度讲,能设计并做出商业化的3D架构芯片很难,表面效应对不同
: 深度迁移率的影响是一个门槛,很难自洽和谐的藕合。不知道英特尔现在有批量样品了
: 还是实验室阶段。至少我老持怀疑态度。
: 其实,并没有特新的东西,3D架构喊了好几年了,真的和理论设计那么奏效谁知道?就
: 像把工艺尺度从65nm降下来,性能并没啥特别提高似的。终归还要看市场,看商业化程
: 度后的技术参数,如果苹果搞了英特尔的移动芯片基本就算盖棺定论了。
s*m
8 楼
This is the interesting part
A while ago Intel decided that a nice way to drive up its stock price would
be to behave more like Apple, keeping major announcements under wraps and
introducing them on its own terms to hopefully build up anticipation and
excitement for Intel's announcements. You've seen examples of this with how
closely Intel held Sandy Bridge's architectural details before its
presentation at IDF, and how little we knew about Quick Sync (Sandy Bridge's
hardware video transcoder) until Intel decided it was time to talk about it.
Apple can get away with it since most of its products are tangible, consumer
facing devices. Intel's technologies are arguably even more important, but
they're just not as easy for the general populace to get excited about.
Today's announcement (Intel Announces first 22nm 3D Tri-Gate Transistors,
Shipping in 2H 2011) is the perfect example of just that.
A while ago Intel decided that a nice way to drive up its stock price would
be to behave more like Apple, keeping major announcements under wraps and
introducing them on its own terms to hopefully build up anticipation and
excitement for Intel's announcements. You've seen examples of this with how
closely Intel held Sandy Bridge's architectural details before its
presentation at IDF, and how little we knew about Quick Sync (Sandy Bridge's
hardware video transcoder) until Intel decided it was time to talk about it.
Apple can get away with it since most of its products are tangible, consumer
facing devices. Intel's technologies are arguably even more important, but
they're just not as easy for the general populace to get excited about.
Today's announcement (Intel Announces first 22nm 3D Tri-Gate Transistors,
Shipping in 2H 2011) is the perfect example of just that.
B*e
10 楼
This is referring to 3D transistor, but not 3D IC packaging.
3D transistor (semiconductor) --> Moore's law
3D packaging (TSV, FO-WLP,......) --> More than Moore
Both are vying to be the future for IC, from different level of architect.
The high-k gate and 3D transistor advantages make Intel 1-2 nodes ahead of
competitions in logics. But as of cost, might be high, as many more steps
are needed for this 22nm HVM ??
【在 y*****5 的大作中提到】
: 3D packaging 在工业界都用了很多年了吧
3D transistor (semiconductor) --> Moore's law
3D packaging (TSV, FO-WLP,......) --> More than Moore
Both are vying to be the future for IC, from different level of architect.
The high-k gate and 3D transistor advantages make Intel 1-2 nodes ahead of
competitions in logics. But as of cost, might be high, as many more steps
are needed for this 22nm HVM ??
【在 y*****5 的大作中提到】
: 3D packaging 在工业界都用了很多年了吧
s*r
12 楼
据说cost只高2-3%.
【在 B*********e 的大作中提到】
: This is referring to 3D transistor, but not 3D IC packaging.
: 3D transistor (semiconductor) --> Moore's law
: 3D packaging (TSV, FO-WLP,......) --> More than Moore
: Both are vying to be the future for IC, from different level of architect.
: The high-k gate and 3D transistor advantages make Intel 1-2 nodes ahead of
: competitions in logics. But as of cost, might be high, as many more steps
: are needed for this 22nm HVM ??
【在 B*********e 的大作中提到】
: This is referring to 3D transistor, but not 3D IC packaging.
: 3D transistor (semiconductor) --> Moore's law
: 3D packaging (TSV, FO-WLP,......) --> More than Moore
: Both are vying to be the future for IC, from different level of architect.
: The high-k gate and 3D transistor advantages make Intel 1-2 nodes ahead of
: competitions in logics. But as of cost, might be high, as many more steps
: are needed for this 22nm HVM ??
D*i
14 楼
这段话就是一堆名词的堆砌,既不能让外行懂,也不能让内行懂。类似于野鸡郎中下诊
断书:“患者表现出香港脚并发症引起的神经系统阿尔法干扰因子的非典型异动,临床
症状很容易与羊癫疯混淆。”
【在 C*G 的大作中提到】
: 我老文科F2凤凰男,野鸡看法
: 发信人: CYG (猪狗神 -- 五美分党), 信区: Stockcafeteria
: 标 题: Re: ARMH是不是到顶了?
: 发信站: BBS 未名空间站 (Wed May 4 15:43:10 2011, 美东)
: 从硬件基本物理架构角度讲,能设计并做出商业化的3D架构芯片很难,表面效应对不同
: 深度迁移率的影响是一个门槛,很难自洽和谐的藕合。不知道英特尔现在有批量样品了
: 还是实验室阶段。至少我老持怀疑态度。
: 其实,并没有特新的东西,3D架构喊了好几年了,真的和理论设计那么奏效谁知道?就
: 像把工艺尺度从65nm降下来,性能并没啥特别提高似的。终归还要看市场,看商业化程
: 度后的技术参数,如果苹果搞了英特尔的移动芯片基本就算盖棺定论了。
断书:“患者表现出香港脚并发症引起的神经系统阿尔法干扰因子的非典型异动,临床
症状很容易与羊癫疯混淆。”
【在 C*G 的大作中提到】
: 我老文科F2凤凰男,野鸡看法
: 发信人: CYG (猪狗神 -- 五美分党), 信区: Stockcafeteria
: 标 题: Re: ARMH是不是到顶了?
: 发信站: BBS 未名空间站 (Wed May 4 15:43:10 2011, 美东)
: 从硬件基本物理架构角度讲,能设计并做出商业化的3D架构芯片很难,表面效应对不同
: 深度迁移率的影响是一个门槛,很难自洽和谐的藕合。不知道英特尔现在有批量样品了
: 还是实验室阶段。至少我老持怀疑态度。
: 其实,并没有特新的东西,3D架构喊了好几年了,真的和理论设计那么奏效谁知道?就
: 像把工艺尺度从65nm降下来,性能并没啥特别提高似的。终归还要看市场,看商业化程
: 度后的技术参数,如果苹果搞了英特尔的移动芯片基本就算盖棺定论了。
s*v
20 楼
4.) How much? (And how little?) Intel estimates that Tri-Gate
transistors are 37 percent faster than those used in the current 32nm
process and will effect an active power reduction of more than 50
percent, but will only add 2 to 3 percent to the cost of a finished
wafer.
什么是finished wafer?和普通的wafer有不同吗?还是特别制作的wafer。
【在 D*****i 的大作中提到】
: 不是3D芯片,而是tri-gate,就是把gate做到三面。还有double-gate。传统的gate只
: 在一面有。
: 下图是tri-gate MOS管的结构。
transistors are 37 percent faster than those used in the current 32nm
process and will effect an active power reduction of more than 50
percent, but will only add 2 to 3 percent to the cost of a finished
wafer.
什么是finished wafer?和普通的wafer有不同吗?还是特别制作的wafer。
【在 D*****i 的大作中提到】
: 不是3D芯片,而是tri-gate,就是把gate做到三面。还有double-gate。传统的gate只
: 在一面有。
: 下图是tri-gate MOS管的结构。
C*G
21 楼
吊大牛, 和你灌了五年了,你老半导体领域我老也大体有数。你以前在光伏和芯片架
构几次装内行,还是弱了些。对纳米尺度下的,基本的,量子,表面态,干涉,钉扎等
对迁移率,(以及效率/功率),由此引发的工艺调整,缺乏基本概念,向来只会嘲笑
人,自己又没研读过,可能都没经历见过。我老就不说你了。呵呵呵
晚安。
hiahia
构几次装内行,还是弱了些。对纳米尺度下的,基本的,量子,表面态,干涉,钉扎等
对迁移率,(以及效率/功率),由此引发的工艺调整,缺乏基本概念,向来只会嘲笑
人,自己又没研读过,可能都没经历见过。我老就不说你了。呵呵呵
晚安。
hiahia
x*1
24 楼
mit fabricated paper is used to prove peer reviewer's stupid. Just some
trash conferences from china accept it.
trash conferences from china accept it.
D*i
25 楼
昨晚临睡前灌了两瓢,没想到引起轩然大波啊。
我胡编的那段野鸡郎中的话,全是一堆医学名词的大杂烩,我如果拿去考真正学医的,
人家肯定不会正儿八经理睬。不是因为人家不懂,而是笑掉大牙了。
同样的,猪狗神,你堆砌名词没用啊,好歹要把名词组成有内在逻辑关系的连贯的句子
,是不是?“从硬件基本物理架构角度讲,能设计并做出商业化的3D架构芯片很难,表
面效应对不同深度迁移率的影响是一个门槛,很难自洽和谐的藕合。”--你这段中文很
别扭啊,快被你雷死了。要不你把它写成英文,让大家欣赏欣赏?别写成英文笑话哈。
【在 C*G 的大作中提到】
: 吊大牛, 和你灌了五年了,你老半导体领域我老也大体有数。你以前在光伏和芯片架
: 构几次装内行,还是弱了些。对纳米尺度下的,基本的,量子,表面态,干涉,钉扎等
: 对迁移率,(以及效率/功率),由此引发的工艺调整,缺乏基本概念,向来只会嘲笑
: 人,自己又没研读过,可能都没经历见过。我老就不说你了。呵呵呵
: 晚安。
: hiahia
我胡编的那段野鸡郎中的话,全是一堆医学名词的大杂烩,我如果拿去考真正学医的,
人家肯定不会正儿八经理睬。不是因为人家不懂,而是笑掉大牙了。
同样的,猪狗神,你堆砌名词没用啊,好歹要把名词组成有内在逻辑关系的连贯的句子
,是不是?“从硬件基本物理架构角度讲,能设计并做出商业化的3D架构芯片很难,表
面效应对不同深度迁移率的影响是一个门槛,很难自洽和谐的藕合。”--你这段中文很
别扭啊,快被你雷死了。要不你把它写成英文,让大家欣赏欣赏?别写成英文笑话哈。
【在 C*G 的大作中提到】
: 吊大牛, 和你灌了五年了,你老半导体领域我老也大体有数。你以前在光伏和芯片架
: 构几次装内行,还是弱了些。对纳米尺度下的,基本的,量子,表面态,干涉,钉扎等
: 对迁移率,(以及效率/功率),由此引发的工艺调整,缺乏基本概念,向来只会嘲笑
: 人,自己又没研读过,可能都没经历见过。我老就不说你了。呵呵呵
: 晚安。
: hiahia
D*i
26 楼
没有特别含义,就是指已经做好集成电路的wafer。
【在 s******v 的大作中提到】
: 4.) How much? (And how little?) Intel estimates that Tri-Gate
: transistors are 37 percent faster than those used in the current 32nm
: process and will effect an active power reduction of more than 50
: percent, but will only add 2 to 3 percent to the cost of a finished
: wafer.
: 什么是finished wafer?和普通的wafer有不同吗?还是特别制作的wafer。
【在 s******v 的大作中提到】
: 4.) How much? (And how little?) Intel estimates that Tri-Gate
: transistors are 37 percent faster than those used in the current 32nm
: process and will effect an active power reduction of more than 50
: percent, but will only add 2 to 3 percent to the cost of a finished
: wafer.
: 什么是finished wafer?和普通的wafer有不同吗?还是特别制作的wafer。
C*G
28 楼
我老受不了你老装内行嘲笑别人,你对3D架构的主要物理和工艺问题估计都不清楚,我
老已经提了surface state,不知道你以前有积淀否。
马上有事做,晚上争取回。呵呵呵
hiahia
【在 D*****i 的大作中提到】
: 昨晚临睡前灌了两瓢,没想到引起轩然大波啊。
: 我胡编的那段野鸡郎中的话,全是一堆医学名词的大杂烩,我如果拿去考真正学医的,
: 人家肯定不会正儿八经理睬。不是因为人家不懂,而是笑掉大牙了。
: 同样的,猪狗神,你堆砌名词没用啊,好歹要把名词组成有内在逻辑关系的连贯的句子
: ,是不是?“从硬件基本物理架构角度讲,能设计并做出商业化的3D架构芯片很难,表
: 面效应对不同深度迁移率的影响是一个门槛,很难自洽和谐的藕合。”--你这段中文很
: 别扭啊,快被你雷死了。要不你把它写成英文,让大家欣赏欣赏?别写成英文笑话哈。
老已经提了surface state,不知道你以前有积淀否。
马上有事做,晚上争取回。呵呵呵
hiahia
【在 D*****i 的大作中提到】
: 昨晚临睡前灌了两瓢,没想到引起轩然大波啊。
: 我胡编的那段野鸡郎中的话,全是一堆医学名词的大杂烩,我如果拿去考真正学医的,
: 人家肯定不会正儿八经理睬。不是因为人家不懂,而是笑掉大牙了。
: 同样的,猪狗神,你堆砌名词没用啊,好歹要把名词组成有内在逻辑关系的连贯的句子
: ,是不是?“从硬件基本物理架构角度讲,能设计并做出商业化的3D架构芯片很难,表
: 面效应对不同深度迁移率的影响是一个门槛,很难自洽和谐的藕合。”--你这段中文很
: 别扭啊,快被你雷死了。要不你把它写成英文,让大家欣赏欣赏?别写成英文笑话哈。
D*i
31 楼
我也是抽空在这里灌水哈,TED还在催我给他们审阅灌水文章呢:
xx-xxx-2011
Dear xxxxxxxxxxx:
Manuscript TED-2010-xxxxxx, entitled "xxxx xxxxxxxx xxxxxxxxxxxxx" is
located in your Reviewer Center at http://mc.manuscriptcentral.com/ted .
This is to remind you that your review is due in one week. To access the
manuscript without login details, please click the link below:
http://mc.manuscriptcentral.com/ted?URL_MASK=xxxxxxxxxxxxxxxxxx
.
To login to your account on the IEEE Transactions on Electron Devices -
ScholarOne Manuscripts site at http://mc.manuscriptcentral.com/ted , your case-sensitive USER ID is xxxxxxxxxxxxx. For security purposes your password is not listed in this email. If you are unsure of your password you may click the link below to set a new password.
http://mc.manuscriptcentral.com/ted?URL_MASK=xxxxxxxxxxxxxxxxxx
I greatly appreciate your help in the review process. Please do not
hesitate to contact me if I can be of any assistance.
Sincerely,
xxxxxxxx
T-ED Editor
[email protected]
再见,哈哈哈。
xx-xxx-2011
Dear xxxxxxxxxxx:
Manuscript TED-2010-xxxxxx, entitled "xxxx xxxxxxxx xxxxxxxxxxxxx" is
located in your Reviewer Center at http://mc.manuscriptcentral.com/ted .
This is to remind you that your review is due in one week. To access the
manuscript without login details, please click the link below:
http://mc.manuscriptcentral.com/ted?URL_MASK=xxxxxxxxxxxxxxxxxx
.
To login to your account on the IEEE Transactions on Electron Devices -
ScholarOne Manuscripts site at http://mc.manuscriptcentral.com/ted , your case-sensitive USER ID is xxxxxxxxxxxxx. For security purposes your password is not listed in this email. If you are unsure of your password you may click the link below to set a new password.
http://mc.manuscriptcentral.com/ted?URL_MASK=xxxxxxxxxxxxxxxxxx
I greatly appreciate your help in the review process. Please do not
hesitate to contact me if I can be of any assistance.
Sincerely,
xxxxxxxx
T-ED Editor
[email protected]
再见,哈哈哈。
g*u
33 楼
老同志是版本镇版之宝! 活宝!
老同志不要火并了!
行研可能在钱的激励下,让高中物理知识的文科生迸发出潜能。但是,跟科班专业教授
短兵相接,犹如江南七怪要单挑黄老邪! Hopeless, indeed.
老同志不要火并了!
行研可能在钱的激励下,让高中物理知识的文科生迸发出潜能。但是,跟科班专业教授
短兵相接,犹如江南七怪要单挑黄老邪! Hopeless, indeed.
s*v
34 楼
大牛!!
大家都是闻道有先后,术业有专攻,就不要太计较了吧。
is
http://mc.manuscriptcentral.com/ted .
the
-
【在 D*****i 的大作中提到】
: 我也是抽空在这里灌水哈,TED还在催我给他们审阅灌水文章呢:
: xx-xxx-2011
: Dear xxxxxxxxxxx:
: Manuscript TED-2010-xxxxxx, entitled "xxxx xxxxxxxx xxxxxxxxxxxxx" is
: located in your Reviewer Center at http://mc.manuscriptcentral.com/ted .
: This is to remind you that your review is due in one week. To access the
: manuscript without login details, please click the link below:
: http://mc.manuscriptcentral.com/ted?URL_MASK=xxxxxxxxxxxxxxxxxx
: .
: To login to your account on the IEEE Transactions on Electron Devices -
大家都是闻道有先后,术业有专攻,就不要太计较了吧。
is
http://mc.manuscriptcentral.com/ted .
the
-
【在 D*****i 的大作中提到】
: 我也是抽空在这里灌水哈,TED还在催我给他们审阅灌水文章呢:
: xx-xxx-2011
: Dear xxxxxxxxxxx:
: Manuscript TED-2010-xxxxxx, entitled "xxxx xxxxxxxx xxxxxxxxxxxxx" is
: located in your Reviewer Center at http://mc.manuscriptcentral.com/ted .
: This is to remind you that your review is due in one week. To access the
: manuscript without login details, please click the link below:
: http://mc.manuscriptcentral.com/ted?URL_MASK=xxxxxxxxxxxxxxxxxx
: .
: To login to your account on the IEEE Transactions on Electron Devices -
l*o
36 楼
争论的两位都是大牛啊,说的话我都听不懂,膜拜!!!
o*d
37 楼
我也是昨天才知道这个3D,其实很简单,老板给组里每个人都发信了
source和drain之间的电流正比于 transistor的电容
电容大,在给定电压下,表面附着的电荷就多,导电能力就强
C=k*A/d k介电常数,A 面积, d间距
最早期减小SiO2厚度d,后来到了12A,漏电流大了,
然后提高K,换 HfO2
这个所谓的3D就是把inversion layer面积A增大了而已
my 2 cents
source和drain之间的电流正比于 transistor的电容
电容大,在给定电压下,表面附着的电荷就多,导电能力就强
C=k*A/d k介电常数,A 面积, d间距
最早期减小SiO2厚度d,后来到了12A,漏电流大了,
然后提高K,换 HfO2
这个所谓的3D就是把inversion layer面积A增大了而已
my 2 cents
C*G
38 楼
你们老板有没有告诉你们interface state束缚了多少电荷?工艺上怎么调整影响?
你可以向吊外大牛请教怎么用charge pump测量一下能级和态密度的说。LOL
hiahia
【在 o******d 的大作中提到】
: 我也是昨天才知道这个3D,其实很简单,老板给组里每个人都发信了
: source和drain之间的电流正比于 transistor的电容
: 电容大,在给定电压下,表面附着的电荷就多,导电能力就强
: C=k*A/d k介电常数,A 面积, d间距
: 最早期减小SiO2厚度d,后来到了12A,漏电流大了,
: 然后提高K,换 HfO2
: 这个所谓的3D就是把inversion layer面积A增大了而已
: my 2 cents
你可以向吊外大牛请教怎么用charge pump测量一下能级和态密度的说。LOL
hiahia
【在 o******d 的大作中提到】
: 我也是昨天才知道这个3D,其实很简单,老板给组里每个人都发信了
: source和drain之间的电流正比于 transistor的电容
: 电容大,在给定电压下,表面附着的电荷就多,导电能力就强
: C=k*A/d k介电常数,A 面积, d间距
: 最早期减小SiO2厚度d,后来到了12A,漏电流大了,
: 然后提高K,换 HfO2
: 这个所谓的3D就是把inversion layer面积A增大了而已
: my 2 cents
b*u
41 楼
呵呵,今天下午intel的一老兄来公司讲mobile CPU,顺便提到了这件事。3D可以让
drain大大增强,让22nm的技术在功耗上比当前的有更大的优势。而且在一个gate上可
以实现多个drain,所以比原来的强不是一点半点。
【在 o******d 的大作中提到】
: 我也是昨天才知道这个3D,其实很简单,老板给组里每个人都发信了
: source和drain之间的电流正比于 transistor的电容
: 电容大,在给定电压下,表面附着的电荷就多,导电能力就强
: C=k*A/d k介电常数,A 面积, d间距
: 最早期减小SiO2厚度d,后来到了12A,漏电流大了,
: 然后提高K,换 HfO2
: 这个所谓的3D就是把inversion layer面积A增大了而已
: my 2 cents
drain大大增强,让22nm的技术在功耗上比当前的有更大的优势。而且在一个gate上可
以实现多个drain,所以比原来的强不是一点半点。
【在 o******d 的大作中提到】
: 我也是昨天才知道这个3D,其实很简单,老板给组里每个人都发信了
: source和drain之间的电流正比于 transistor的电容
: 电容大,在给定电压下,表面附着的电荷就多,导电能力就强
: C=k*A/d k介电常数,A 面积, d间距
: 最早期减小SiO2厚度d,后来到了12A,漏电流大了,
: 然后提高K,换 HfO2
: 这个所谓的3D就是把inversion layer面积A增大了而已
: my 2 cents
w*1
42 楼
都tmd太高深了
n*r
45 楼
我靠,这个贴是在深度BSO谁的校友更酷更核心吗?
说的好像我没有同学做chip似的。
就在intel,就是archietecuture的,我写个邮件去问问。
同时我再问一个全世界都认识的新闻人物,你们自己去猜,是谁。
说的好像我没有同学做chip似的。
就在intel,就是archietecuture的,我写个邮件去问问。
同时我再问一个全世界都认识的新闻人物,你们自己去猜,是谁。
l*j
54 楼
这东西都要大规模量产了Intel才宣布,内部实际研发的至少还要提前两代。现在15纳
米的fab已经在建,intel 的技术储备还是很牛的。
米的fab已经在建,intel 的技术储备还是很牛的。
m*8
57 楼
难道说,用这个东西作出来的atom就直接pk掉arm了?
那还不快买wintel的股票,在这里吵什么Y?
那还不快买wintel的股票,在这里吵什么Y?
b*n
58 楼
猪狗神太傻了。还扯什么“从硬件基本物理架构角度讲,能设计并做出商业化的3D架构
芯片很难”。 显然对industry 做事方式不了解。又不是大学,啥东西都要抢个先。公
司里的发明出于保密的考虑不发文章的多的是。 现在公布22nm, 说明:1.22nm已经量
产了。 2. 16nm取得决定性突破了。
把工艺尺度降下来的好处是省电 ,省面积。单个管子的性能能有什么提高?
芯片很难”。 显然对industry 做事方式不了解。又不是大学,啥东西都要抢个先。公
司里的发明出于保密的考虑不发文章的多的是。 现在公布22nm, 说明:1.22nm已经量
产了。 2. 16nm取得决定性突破了。
把工艺尺度降下来的好处是省电 ,省面积。单个管子的性能能有什么提高?
t*g
59 楼
呵呵,
(1)开卷考试: 本版讨论技术问题就是开卷考试。google搜不到的信息与观点,才有机
会拿高分;
(2)秀自己的同学等,就跟北京开出租车的的哥侃大山一样,无法考证。权作吹牛。
灌水快乐! 呵呵
(1)开卷考试: 本版讨论技术问题就是开卷考试。google搜不到的信息与观点,才有机
会拿高分;
(2)秀自己的同学等,就跟北京开出租车的的哥侃大山一样,无法考证。权作吹牛。
灌水快乐! 呵呵
b*2
60 楼
logic, zhugoushen, pls pay attention to your logic
l*y
62 楼
介个东东ibm大概也搞了近10年了。 为啥ibm没动静?
l*y
63 楼
不知道能比其他node贵多少。 太贵也没大意思了。
相关阅读
现在看看300不是那么遥不可及了吧?TWTR没人喊了?何时止跌逆转?恭喜AMD,期待NVDA的ERC 今年被批准花 $19 capital return, 明年计划 $20B按摩店今天到过14.40?兽性大发,人生如梦从图形看,AMD这次ER后波动会比较大。Alphabet警告投资者:欧盟以后还可能有更多罚款感谢 AMD 账户又历史新高了E神,现在市场bullish with low volatilityWPX有人喊吗? @ 11大家晒一下自己的投资组合?谢谢AMDSP 500上涨空间巨大叉子 X 爆了廉储马上要缩婊了,怎么还有SB往股市投钱AMZN ER路上压死的蛇而不可以捡回来吃,沙特是会玩的Charles schwab的quicken loan怎么样?