b*a
2 楼
发信人: guagua (我有罪), 信区: bagua
标 题: 瓜瓜我的忏悔书!!
发信站: BBS 未名空间站 (Sat Apr 27 02:05:06 2013, 美东)
我承认我有罪,因为我一直暗恋烦妞儿。自打我见到烦妞儿的第一眼,我就从心里深深
的喜欢上了她。她的乌黑的长发,弯弯的柳眉,漆黑的眸子,翘挺的鼻梁,鲜红的嫩唇
,浅浅的酒窝,白皙而又细腻的肌肤,深深的刻在了我的记忆里,无时无刻不提醒着我
她的存在。
我迷恋她的锁骨,光滑而又委婉
我迷恋她的双肩,瘦削而又柔软
我迷恋她的腰肢,纤细而又有力
我迷恋她的圆臀,挺翘而又弹性
我迷恋她的长腿,笔直而又丰满
我嫉妒,我迷醉;我痛苦,我爱恋;我迷茫,我绝望!让我燃烧吧,就让我永生在这炽
热的火焰中,为她嚎叫着,化为刹那的辉煌!!!
瓜瓜我的原来的罪状如下:
搞不懂姐为啥不招WSN喜欢,姐给自己下最后通牒再没WSN骚扰果断外F
姐自认美丽大方善良性感聪明可爱,性格也不奇葩,自从来美国后每天正常吃饭睡觉上
学生活,啥都好就期待着周围能有个WSN给姐暗送个秋波让姐脸红红心跳跳。但为嘛姐
就从来都求不得!周围若干白男尝试约姐,有课上遇到的,路上遇到的,各种奇葩方式
遇到的,朋友介绍的,姐表示一概不理,当面留完电话然后拜拜之后从不回短信不接电
话路上不小心碰见假装没看见躲着走。姐就期待着能有个WSN跟姐邂逅一下夸姐两句
cute要个电话啥的再吃个饭说个话,结果就是没有!姐表示对WSN们很伤心很失望好不
好!你就不能平常走路上多注意身边的小星星然后搭个讪啥的!姐从不拿男人当饭票也
不拿男人当跳板咋就没人发现姐的好!姐马上就27生日表示完全耗不起再没有任何WSN
的消息就直接跟各路奇葩白男约会,不再浪费时间上论坛!姐今真心激动了把真心话全
说了,WSN们别攻击姐外F,有攻击姐的时间泥马还不如给姐投个条!
标 题: 瓜瓜我的忏悔书!!
发信站: BBS 未名空间站 (Sat Apr 27 02:05:06 2013, 美东)
我承认我有罪,因为我一直暗恋烦妞儿。自打我见到烦妞儿的第一眼,我就从心里深深
的喜欢上了她。她的乌黑的长发,弯弯的柳眉,漆黑的眸子,翘挺的鼻梁,鲜红的嫩唇
,浅浅的酒窝,白皙而又细腻的肌肤,深深的刻在了我的记忆里,无时无刻不提醒着我
她的存在。
我迷恋她的锁骨,光滑而又委婉
我迷恋她的双肩,瘦削而又柔软
我迷恋她的腰肢,纤细而又有力
我迷恋她的圆臀,挺翘而又弹性
我迷恋她的长腿,笔直而又丰满
我嫉妒,我迷醉;我痛苦,我爱恋;我迷茫,我绝望!让我燃烧吧,就让我永生在这炽
热的火焰中,为她嚎叫着,化为刹那的辉煌!!!
瓜瓜我的原来的罪状如下:
搞不懂姐为啥不招WSN喜欢,姐给自己下最后通牒再没WSN骚扰果断外F
姐自认美丽大方善良性感聪明可爱,性格也不奇葩,自从来美国后每天正常吃饭睡觉上
学生活,啥都好就期待着周围能有个WSN给姐暗送个秋波让姐脸红红心跳跳。但为嘛姐
就从来都求不得!周围若干白男尝试约姐,有课上遇到的,路上遇到的,各种奇葩方式
遇到的,朋友介绍的,姐表示一概不理,当面留完电话然后拜拜之后从不回短信不接电
话路上不小心碰见假装没看见躲着走。姐就期待着能有个WSN跟姐邂逅一下夸姐两句
cute要个电话啥的再吃个饭说个话,结果就是没有!姐表示对WSN们很伤心很失望好不
好!你就不能平常走路上多注意身边的小星星然后搭个讪啥的!姐从不拿男人当饭票也
不拿男人当跳板咋就没人发现姐的好!姐马上就27生日表示完全耗不起再没有任何WSN
的消息就直接跟各路奇葩白男约会,不再浪费时间上论坛!姐今真心激动了把真心话全
说了,WSN们别攻击姐外F,有攻击姐的时间泥马还不如给姐投个条!
S*C
3 楼
http://www.nytimes.com/2014/02/16/opinion/sunday/is-the-univers
IN Mikhail Bulgakov's novel “The Master and Margarita,” the protagonist, a
writer, burns a manuscript in a moment of despair, only to find out later
from the Devil that “manuscripts don’t burn.” While you might appreciate
this romantic sentiment, there is of course no reason to think that it is
true. Nikolai Gogol apparently burned the second volume of “Dead Souls,”
and it has been lost forever. Likewise, if Bulgakov had burned his
manuscript, we would have never known “Master and Margarita.” No other
author would have written the same novel.
But there is one area of human endeavor that comes close to exemplifying the
maxim “manuscripts don’t burn.” That area is mathematics. If Pythagoras
had not lived, or if his work had been destroyed, someone else eventually
would have discovered the same Pythagorean theorem. Moreover, this theorem
means the same thing to everyone today as it meant 2,500 years ago, and will
mean the same thing to everyone a thousand years from now — no matter what
advances occur in technology or what new evidence emerges. Mathematical
knowledge is unlike any other knowledge. Its truths are objective, necessary
and timeless.
What kinds of things are mathematical entities and theorems, that they are
knowable in this way? Do they exist somewhere, a set of immaterial objects
in the enchanted gardens of the Platonic world, waiting to be discovered? Or
are they mere creations of the human mind?
This question has divided thinkers for centuries. It seems spooky to suggest
that mathematical entities actually exist in and of themselves. But if math
is only a product of the human imagination, how do we all end up agreeing
on exactly the same math? Some might argue that mathematical entities are
like chess pieces, elaborate fictions in a game invented by humans. But
unlike chess, mathematics is indispensable to scientific theories describing
our universe. And yet there are many mathematical concepts — from esoteric
numerical systems to infinite-dimensional spaces — that we don’t
currently find in the world around us. In what sense do they exist?
Many mathematicians, when pressed, admit to being Platonists. The great
logician Kurt Gödel argued that mathematical concepts and ideas “form
an objective reality of their own, which we cannot create or change, but
only perceive and describe.” But if this is true, how do humans manage to
access this hidden reality?
We don’t know. But one fanciful possibility is that we live in a computer
simulation based on the laws of mathematics — not in what we commonly take
to be the real world. According to this theory, some highly advanced
computer programmer of the future has devised this simulation, and we are
unknowingly part of it. Thus when we discover a mathematical truth, we are
simply discovering aspects of the code that the programmer used.
This may strike you as very unlikely. But the Oxford philosopher Nick
Bostrom has argued that we are more likely to be in such a simulation than
not. If such simulations are possible in theory, he reasons, then eventually
humans will create them — presumably many of them. If this is so, in time
there will be many more simulated worlds than nonsimulated ones.
Statistically speaking, therefore, we are more likely to be living in a
simulated world than the real one.
Very clever. But is there any way to empirically test this hypothesis?
Indeed, there may be. In a recent paper, “Constraints on the Universe as a
Numerical Simulation,” the physicists Silas R. Beane, Zohreh Davoudi and
Martin J. Savage outline a possible method for detecting that our world is
actually a computer simulation. Physicists have been creating their own
computer simulations of the forces of nature for years — on a tiny scale,
the size of an atomic nucleus. They use a three-dimensional grid to model a
little chunk of the universe; then they run the program to see what happens.
This way, they have been able to simulate the motion and collisions of
elementary particles.
But these computer simulations, Professor Beane and his colleagues observe,
generate slight but distinctive anomalies — certain kinds of asymmetries.
Might we be able to detect these same distinctive anomalies in the actual
universe, they wondered? In their paper, they suggest that a closer look at
cosmic rays, those high-energy particles coming to Earth’s atmosphere from
outside the solar system, may reveal similar asymmetries. If so, this would
indicate that we might — just might — ourselves be in someone else’s
computer simulation.
Are we prepared to take the “red pill,” as Neo did in “The Matrix,” to
see the truth behind the illusion — to see “how deep the rabbit hole goes
”? Perhaps not yet. The jury is still out on the simulation hypothesis. But
even if it proves too far-fetched, the possibility of the Platonic nature
of mathematical ideas remains — and may hold the key to understanding our
own reality.
Edward Frenkel, a professor of mathematics at the University of California,
Berkeley, is the author of “Love and Math: The Heart of Hidden Reality.”
A version of this op-ed appears in print on February 16, 2014, on page SR12
of the New York edition with the headline: Is the Universe a Simulation?
IN Mikhail Bulgakov's novel “The Master and Margarita,” the protagonist, a
writer, burns a manuscript in a moment of despair, only to find out later
from the Devil that “manuscripts don’t burn.” While you might appreciate
this romantic sentiment, there is of course no reason to think that it is
true. Nikolai Gogol apparently burned the second volume of “Dead Souls,”
and it has been lost forever. Likewise, if Bulgakov had burned his
manuscript, we would have never known “Master and Margarita.” No other
author would have written the same novel.
But there is one area of human endeavor that comes close to exemplifying the
maxim “manuscripts don’t burn.” That area is mathematics. If Pythagoras
had not lived, or if his work had been destroyed, someone else eventually
would have discovered the same Pythagorean theorem. Moreover, this theorem
means the same thing to everyone today as it meant 2,500 years ago, and will
mean the same thing to everyone a thousand years from now — no matter what
advances occur in technology or what new evidence emerges. Mathematical
knowledge is unlike any other knowledge. Its truths are objective, necessary
and timeless.
What kinds of things are mathematical entities and theorems, that they are
knowable in this way? Do they exist somewhere, a set of immaterial objects
in the enchanted gardens of the Platonic world, waiting to be discovered? Or
are they mere creations of the human mind?
This question has divided thinkers for centuries. It seems spooky to suggest
that mathematical entities actually exist in and of themselves. But if math
is only a product of the human imagination, how do we all end up agreeing
on exactly the same math? Some might argue that mathematical entities are
like chess pieces, elaborate fictions in a game invented by humans. But
unlike chess, mathematics is indispensable to scientific theories describing
our universe. And yet there are many mathematical concepts — from esoteric
numerical systems to infinite-dimensional spaces — that we don’t
currently find in the world around us. In what sense do they exist?
Many mathematicians, when pressed, admit to being Platonists. The great
logician Kurt Gödel argued that mathematical concepts and ideas “form
an objective reality of their own, which we cannot create or change, but
only perceive and describe.” But if this is true, how do humans manage to
access this hidden reality?
We don’t know. But one fanciful possibility is that we live in a computer
simulation based on the laws of mathematics — not in what we commonly take
to be the real world. According to this theory, some highly advanced
computer programmer of the future has devised this simulation, and we are
unknowingly part of it. Thus when we discover a mathematical truth, we are
simply discovering aspects of the code that the programmer used.
This may strike you as very unlikely. But the Oxford philosopher Nick
Bostrom has argued that we are more likely to be in such a simulation than
not. If such simulations are possible in theory, he reasons, then eventually
humans will create them — presumably many of them. If this is so, in time
there will be many more simulated worlds than nonsimulated ones.
Statistically speaking, therefore, we are more likely to be living in a
simulated world than the real one.
Very clever. But is there any way to empirically test this hypothesis?
Indeed, there may be. In a recent paper, “Constraints on the Universe as a
Numerical Simulation,” the physicists Silas R. Beane, Zohreh Davoudi and
Martin J. Savage outline a possible method for detecting that our world is
actually a computer simulation. Physicists have been creating their own
computer simulations of the forces of nature for years — on a tiny scale,
the size of an atomic nucleus. They use a three-dimensional grid to model a
little chunk of the universe; then they run the program to see what happens.
This way, they have been able to simulate the motion and collisions of
elementary particles.
But these computer simulations, Professor Beane and his colleagues observe,
generate slight but distinctive anomalies — certain kinds of asymmetries.
Might we be able to detect these same distinctive anomalies in the actual
universe, they wondered? In their paper, they suggest that a closer look at
cosmic rays, those high-energy particles coming to Earth’s atmosphere from
outside the solar system, may reveal similar asymmetries. If so, this would
indicate that we might — just might — ourselves be in someone else’s
computer simulation.
Are we prepared to take the “red pill,” as Neo did in “The Matrix,” to
see the truth behind the illusion — to see “how deep the rabbit hole goes
”? Perhaps not yet. The jury is still out on the simulation hypothesis. But
even if it proves too far-fetched, the possibility of the Platonic nature
of mathematical ideas remains — and may hold the key to understanding our
own reality.
Edward Frenkel, a professor of mathematics at the University of California,
Berkeley, is the author of “Love and Math: The Heart of Hidden Reality.”
A version of this op-ed appears in print on February 16, 2014, on page SR12
of the New York edition with the headline: Is the Universe a Simulation?
b*l
4 楼
按照流行的观点(本书反对这种观点),经验科学的特征是它们运用所谓“归纳方
法”。按照这种观点,科学发现的逻辑等同于归纳逻辑,即这些归纳方法的逻辑分析。
一般把这样一种推理称作“归纳的”,假如它是从单称陈述(有时也称作“特称陈
述”),例如对观察和实验结果的记述,过渡到全称陈述,例如假说或理论。
从逻辑的观点来看,显然不能证明从单称陈述(不管它们有多少)中推论出全称陈
述是正确的,因为用这种方法得出的结论总是可以成为错误的。不管我们已经观察到多
少只白天鹅,也不能证明这样的结论;所有天鹅都是白的。
归纳推理是否证明为正确,或者在什么条件下证明为正确,被称作归纳问题。
归纳问题也可以被表述为如何确立根据经验得出的全称陈述真理性的问题,经验科
学的假说和理论系统就是这样的全称陈述。因为许多人相信这些全称陈述的真理性是“
根据经验得知的”;但是,显然,观察或实验结果的经验的记述,首先只能是单称陈述
,不能是全称陈述。因此,人们说从经验得知一个全称陈述的真理性,意思常常是这样
:我们能用某种方法把这个全称陈述的真理性还原为一些单称陈述的正确性,而这些单
称陈述根据经验得知是真的;这就等于说:全称陈述是以归纳推理为基础的。因此,问
是否存在已知是真的自然定律不过是用另一种方法问归纳推理在逻辑上是否证明为正确
。
然而,如果我们要设法证明归纳推理是正确的,我们就必须首先确立归纳原理。归
纳原理是我们借以能把归纳推理纳入逻辑上可接受的形式中去的陈述。在归纳逻辑拥护
者的眼里,归纳原理对科学方法来说是极重要的。Reichenbach说:“……这个原理决
定科学理论的其理性。从科学中排除这个原理就等于剥夺了科学决定其理论的真伪的能
力。显然,没有这个原理,科学就不再有权利将它的理论和诗人的幻想的、任意的创作
区别开来了。”
这个归纳原理不可能是如重言式或分析陈述那样的纯逻辑真理。的确,假如有什么
纯逻辑的归纳原理的话,就不会有归纳问题了。因为在这种情况下,所有的归纳推理就
必须被看作纯逻辑的或重言的变形,就和演绎逻辑的推理一样。因此,归纳原理必须是
一个综合陈述;就是说,这种陈述的否定并不自相矛盾,而在逻辑上是可能的。所以,
问题发生了:为什么我们必须接受这样一个原理呢?我们根据理性的理由如何能证明接
受它是正确的呢?
相信归纳逻辑的人同Reichenbach一起急于指出:“归纳原理是为整个科学无保留
地接受的,在日常生活里也没有人能认真地怀疑这个原理”,然而,即使假设情况是如
此(毕竟,整个科学也可能是错的),我仍然认为,归纳原理是多余的,它必定导致逻
辑的矛盾。
归纳原理易于产生矛盾,这在Hume的著作里,已经说清楚了;那里还说到:即使有
可能避免这种矛盾,也是很困难的。因为这个归纳原理本身也必须是一个全称陈述。假
如我们试图认为它的真理性来自经验而得知,那么,导致引入归纳原理的同一个问题就
再一次产生了。为了证明这个原理,我们就必须运用归纳推理;而为了证明这些归纳推
理,我们就必须假定一个更高层次的归纳原理;如此等等。这样,想把归纳原理建基于
经验之上的试图就破产了。因为这样做必定导致无穷后退。
Kant试图摆脱这个困难,办法是他把归纳原理(他称作“普遍因果性原理”)看作
是“先验地正确的”。但是我认为他为综合陈述提供一个先验的证明的这种试图,虽则
机敏但并不成功。
我自己的观点是:这里概述的归纳逻辑的各种困难是不可克服的。现在很流行这样
一种学说:归纳推理虽然“严格地说”是不“正确的”,但能达到某种程度的“可靠性
”或“概然性”。我认为,在这一种学说里同样存在着不可克服的困难。按照这种学说
,归纳推理是“概然推理”。Reichenbach说:“我们将归纳原理描述为科学借以判定
真理性的手段。更确切地说,我们应该说:它的作用是判定慨然性。因为科学并不能到
达真理或谬误……科学陈述只能达到一系列不同程度的概然性,这种概然性不可达到的
上限和下限就是真理和谬误。”
在这个阶段,我可以不考虑归纳逻辑信仰者持有的这种概率观念,我在后面将要把
它作为极不符合他们自己的论题而加以拒斥(参看下面第80节)。现在我可以这样做,
因为求助于概率甚至并未触及上面已经提及的那些归纳原理所遇到的困难。因为,假如
我们对根据归纳推理得来的论述给予一定程度的概率,那么为了证明它就必须援引一条
新的经过适当修改的归纳原理。而这条新原理本身也必须被证明,如此等等。而且假如
这条归纳原理本身也被说成不是“真的”,只是“概然的”,也得不出什么结果。简言
之,和归纳逻辑的其他任何一种形式一样,概然推理的逻辑,或“概率逻辑”,不是导
致无穷后退就是导致先验论的学说“。
在下面展开论述的理论是与所有运用归纳逻辑观念的试图直接对立的。这理论可以
称之为检验演绎法理论,或者说就是这样的观点:假说只能以经验来检验,而且只是在
这假说被提出以后。
在我详细论述这个观点(可以称为“演绎主义”,以与“归纳主义”相对立)以前
,我首先必须将涉及经验事实的知识心理学和只与逻辑关系相联系的知识逻辑清楚地加
以区别。因为对归纳逻辑的信仰多半是由于心理学问题和认识论问题的混淆。顺便说一
下,可值得注意的是:这种混淆不仅对知识的逻辑而且对知识的心理学同样带来了麻烦
。
法”。按照这种观点,科学发现的逻辑等同于归纳逻辑,即这些归纳方法的逻辑分析。
一般把这样一种推理称作“归纳的”,假如它是从单称陈述(有时也称作“特称陈
述”),例如对观察和实验结果的记述,过渡到全称陈述,例如假说或理论。
从逻辑的观点来看,显然不能证明从单称陈述(不管它们有多少)中推论出全称陈
述是正确的,因为用这种方法得出的结论总是可以成为错误的。不管我们已经观察到多
少只白天鹅,也不能证明这样的结论;所有天鹅都是白的。
归纳推理是否证明为正确,或者在什么条件下证明为正确,被称作归纳问题。
归纳问题也可以被表述为如何确立根据经验得出的全称陈述真理性的问题,经验科
学的假说和理论系统就是这样的全称陈述。因为许多人相信这些全称陈述的真理性是“
根据经验得知的”;但是,显然,观察或实验结果的经验的记述,首先只能是单称陈述
,不能是全称陈述。因此,人们说从经验得知一个全称陈述的真理性,意思常常是这样
:我们能用某种方法把这个全称陈述的真理性还原为一些单称陈述的正确性,而这些单
称陈述根据经验得知是真的;这就等于说:全称陈述是以归纳推理为基础的。因此,问
是否存在已知是真的自然定律不过是用另一种方法问归纳推理在逻辑上是否证明为正确
。
然而,如果我们要设法证明归纳推理是正确的,我们就必须首先确立归纳原理。归
纳原理是我们借以能把归纳推理纳入逻辑上可接受的形式中去的陈述。在归纳逻辑拥护
者的眼里,归纳原理对科学方法来说是极重要的。Reichenbach说:“……这个原理决
定科学理论的其理性。从科学中排除这个原理就等于剥夺了科学决定其理论的真伪的能
力。显然,没有这个原理,科学就不再有权利将它的理论和诗人的幻想的、任意的创作
区别开来了。”
这个归纳原理不可能是如重言式或分析陈述那样的纯逻辑真理。的确,假如有什么
纯逻辑的归纳原理的话,就不会有归纳问题了。因为在这种情况下,所有的归纳推理就
必须被看作纯逻辑的或重言的变形,就和演绎逻辑的推理一样。因此,归纳原理必须是
一个综合陈述;就是说,这种陈述的否定并不自相矛盾,而在逻辑上是可能的。所以,
问题发生了:为什么我们必须接受这样一个原理呢?我们根据理性的理由如何能证明接
受它是正确的呢?
相信归纳逻辑的人同Reichenbach一起急于指出:“归纳原理是为整个科学无保留
地接受的,在日常生活里也没有人能认真地怀疑这个原理”,然而,即使假设情况是如
此(毕竟,整个科学也可能是错的),我仍然认为,归纳原理是多余的,它必定导致逻
辑的矛盾。
归纳原理易于产生矛盾,这在Hume的著作里,已经说清楚了;那里还说到:即使有
可能避免这种矛盾,也是很困难的。因为这个归纳原理本身也必须是一个全称陈述。假
如我们试图认为它的真理性来自经验而得知,那么,导致引入归纳原理的同一个问题就
再一次产生了。为了证明这个原理,我们就必须运用归纳推理;而为了证明这些归纳推
理,我们就必须假定一个更高层次的归纳原理;如此等等。这样,想把归纳原理建基于
经验之上的试图就破产了。因为这样做必定导致无穷后退。
Kant试图摆脱这个困难,办法是他把归纳原理(他称作“普遍因果性原理”)看作
是“先验地正确的”。但是我认为他为综合陈述提供一个先验的证明的这种试图,虽则
机敏但并不成功。
我自己的观点是:这里概述的归纳逻辑的各种困难是不可克服的。现在很流行这样
一种学说:归纳推理虽然“严格地说”是不“正确的”,但能达到某种程度的“可靠性
”或“概然性”。我认为,在这一种学说里同样存在着不可克服的困难。按照这种学说
,归纳推理是“概然推理”。Reichenbach说:“我们将归纳原理描述为科学借以判定
真理性的手段。更确切地说,我们应该说:它的作用是判定慨然性。因为科学并不能到
达真理或谬误……科学陈述只能达到一系列不同程度的概然性,这种概然性不可达到的
上限和下限就是真理和谬误。”
在这个阶段,我可以不考虑归纳逻辑信仰者持有的这种概率观念,我在后面将要把
它作为极不符合他们自己的论题而加以拒斥(参看下面第80节)。现在我可以这样做,
因为求助于概率甚至并未触及上面已经提及的那些归纳原理所遇到的困难。因为,假如
我们对根据归纳推理得来的论述给予一定程度的概率,那么为了证明它就必须援引一条
新的经过适当修改的归纳原理。而这条新原理本身也必须被证明,如此等等。而且假如
这条归纳原理本身也被说成不是“真的”,只是“概然的”,也得不出什么结果。简言
之,和归纳逻辑的其他任何一种形式一样,概然推理的逻辑,或“概率逻辑”,不是导
致无穷后退就是导致先验论的学说“。
在下面展开论述的理论是与所有运用归纳逻辑观念的试图直接对立的。这理论可以
称之为检验演绎法理论,或者说就是这样的观点:假说只能以经验来检验,而且只是在
这假说被提出以后。
在我详细论述这个观点(可以称为“演绎主义”,以与“归纳主义”相对立)以前
,我首先必须将涉及经验事实的知识心理学和只与逻辑关系相联系的知识逻辑清楚地加
以区别。因为对归纳逻辑的信仰多半是由于心理学问题和认识论问题的混淆。顺便说一
下,可值得注意的是:这种混淆不仅对知识的逻辑而且对知识的心理学同样带来了麻烦
。
i*1
5 楼
rt
download 0.82M, upload 0.33M
和4G没法比,3G里还算不错
download 0.82M, upload 0.33M
和4G没法比,3G里还算不错
f*a
6 楼
查查地图最近的McDonald在哪里,想上厕所就走过去,开车会费点汽油
m*o
7 楼
支持FFWF
wy
8 楼
赞星空王座
a
appreciate
★ 发自iPhone App: ChineseWeb 8.6
【在 S**C 的大作中提到】
: http://www.nytimes.com/2014/02/16/opinion/sunday/is-the-univers
: IN Mikhail Bulgakov's novel “The Master and Margarita,” the protagonist, a
: writer, burns a manuscript in a moment of despair, only to find out later
: from the Devil that “manuscripts don’t burn.” While you might appreciate
: this romantic sentiment, there is of course no reason to think that it is
: true. Nikolai Gogol apparently burned the second volume of “Dead Souls,”
: and it has been lost forever. Likewise, if Bulgakov had burned his
: manuscript, we would have never known “Master and Margarita.” No other
: author would have written the same novel.
: But there is one area of human endeavor that comes close to exemplifying the
a
appreciate
★ 发自iPhone App: ChineseWeb 8.6
【在 S**C 的大作中提到】
: http://www.nytimes.com/2014/02/16/opinion/sunday/is-the-univers
: IN Mikhail Bulgakov's novel “The Master and Margarita,” the protagonist, a
: writer, burns a manuscript in a moment of despair, only to find out later
: from the Devil that “manuscripts don’t burn.” While you might appreciate
: this romantic sentiment, there is of course no reason to think that it is
: true. Nikolai Gogol apparently burned the second volume of “Dead Souls,”
: and it has been lost forever. Likewise, if Bulgakov had burned his
: manuscript, we would have never known “Master and Margarita.” No other
: author would have written the same novel.
: But there is one area of human endeavor that comes close to exemplifying the
m*o
10 楼
刨坑。讲究一点的埋个缸。
B*Z
12 楼
顾铁:这个问题我说两句。。。
a
appreciate
the
【在 S**C 的大作中提到】
: http://www.nytimes.com/2014/02/16/opinion/sunday/is-the-univers
: IN Mikhail Bulgakov's novel “The Master and Margarita,” the protagonist, a
: writer, burns a manuscript in a moment of despair, only to find out later
: from the Devil that “manuscripts don’t burn.” While you might appreciate
: this romantic sentiment, there is of course no reason to think that it is
: true. Nikolai Gogol apparently burned the second volume of “Dead Souls,”
: and it has been lost forever. Likewise, if Bulgakov had burned his
: manuscript, we would have never known “Master and Margarita.” No other
: author would have written the same novel.
: But there is one area of human endeavor that comes close to exemplifying the
a
appreciate
the
【在 S**C 的大作中提到】
: http://www.nytimes.com/2014/02/16/opinion/sunday/is-the-univers
: IN Mikhail Bulgakov's novel “The Master and Margarita,” the protagonist, a
: writer, burns a manuscript in a moment of despair, only to find out later
: from the Devil that “manuscripts don’t burn.” While you might appreciate
: this romantic sentiment, there is of course no reason to think that it is
: true. Nikolai Gogol apparently burned the second volume of “Dead Souls,”
: and it has been lost forever. Likewise, if Bulgakov had burned his
: manuscript, we would have never known “Master and Margarita.” No other
: author would have written the same novel.
: But there is one area of human endeavor that comes close to exemplifying the
f*r
15 楼
L*d
16 楼
赞星空王座的估计都很年轻,以至于没有看过the thirteenth floor.星空从setting上
来说,并没有任何新意。
来说,并没有任何新意。
i*1
20 楼
根据att网站:
"hspa+ delivering 4G speeds"
http://www.att.com/network/
【在 d******n 的大作中提到】
: 还是属于3G吧。
"hspa+ delivering 4G speeds"
http://www.att.com/network/
【在 d******n 的大作中提到】
: 还是属于3G吧。
d*e
22 楼
姐应该发彪么?
s*3
26 楼
4G的速度怎么也得在10M(download)以上吧
s*3
37 楼
问一下aaaty
什么是GA行为??
什么是GA行为??
h*U
130 楼
上次去加洲也去了一家,忘了叫什么名字了
m*o
196 楼
我来晚了
d*e
199 楼
相关阅读
iMac上面的iSight不工作请教Ipad3.2.2升级4.2.1问题Re: 关于三爽板子 2ZZ 从保安到手机黄牛:炒iPhone4一单赚十几万求教:ipad和iphone的程序开发iphone上播放视频hotmail的exchange server可以用么?白色iphone 还有指望没Apple投资东芝液晶屏生产线公司把itunes.apple给屏蔽了最新Verizon iPhone谣言1月LTE版mpb外接电视黑屏?macbook pro突然找不到硬盘了感觉我的Magic Trackpad很耗电啊Linux用户表示苦不堪言用ipad的小心了我的ipod touch 4非常费电。macos 下,远程操作有GUI的操作系统 用什么软件最好?多谢Itouch 4代上面使用skype聊天,何谓打不开“视频”?有朋友在盤算iPhone 5 么?(好奇)