avatar
b*h
1
Why the eigenvector of a matrix can be 0. (Please look at the last row of Out[2]).
In[1]:=
mat={{0,1/3,2/3,0,0},{0,0,0,1/4,3/4},{0,0,0,1/2,1/2},{1,0,0,0,0},{1,0,0,0,0}};
In[2]:=
Eigenvectors[mat]
Out[2]//OutputForm=
-1 + I Sqrt[3] 1 - I Sqrt[3] 1 - I Sqrt[3]
{{--------------, -1 + -------------, -1 + -------------, 1, 1},
2 2 2
-1 - I Sqrt[3] 1 + I Sqrt[3] 1 + I Sqrt[3]
{--------------, -1 + -------------, -1 + ---------
avatar
y*t
2
The matrix has a Jordan block of size 2X2. So it only has 4 eigenvectors.
Nothing wrong here.

【在 b******h 的大作中提到】
: Why the eigenvector of a matrix can be 0. (Please look at the last row of Out[2]).
: In[1]:=
: mat={{0,1/3,2/3,0,0},{0,0,0,1/4,3/4},{0,0,0,1/2,1/2},{1,0,0,0,0},{1,0,0,0,0}};
: In[2]:=
: Eigenvectors[mat]
: Out[2]//OutputForm=
: -1 + I Sqrt[3] 1 - I Sqrt[3] 1 - I Sqrt[3]
: {{--------------, -1 + -------------, -1 + -------------, 1, 1},
: 2 2 2
: -1 - I Sqrt[3] 1 + I Sqrt[3] 1 + I Sqrt[3]

avatar
b*h
3
问题是在Mathematica里如何才能对角化mat呢?

【在 y**t 的大作中提到】
: The matrix has a Jordan block of size 2X2. So it only has 4 eigenvectors.
: Nothing wrong here.

相关阅读
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。