[转载]我知道的几个数据库/数据挖掘会议(不同的意见/# CS - 计算机科学
g*i
1 楼
有些人的工作很原创,每年总有一些很新颖的东西。有的人文章很多,但主要都是
follow别人的工作。Database领域有不少paper machine。有的地方,整个group就是一个大的papermachine。
个人感觉数据库研究者倾向于把数据挖掘看作一个数据库的子领域,因而对数据挖掘的会议rating较低。然而对其他背景的人而言,数据挖掘是相对独立的一个新兴领域,因而对其会议rating比较高。
SIGMOD:97分,数据库的最高会议,涉及范围广泛,稍偏应用(因为理论文章有PODS)。没说的,景仰如滔滔江水。这个会议不仅是double-blind review,而且有rebuttal procedure,可谓独树一帜,与众不同。
VLDB:95分,非常好的数据库会议。与SIGMOD类似,涉及范围广泛,稍偏应用。
从文章的质量来说,SIGMOD和VLDB难分伯仲,没有说谁比谁更高。他们的范围也几乎一样。不少牛人都认为,今年的rebuttal procedure其实并不怎么成功。投稿太多,很难做到每一篇都公平公正。很多rebuttal没人看。
double-blind是把双刃剑。这几
follow别人的工作。Database领域有不少paper machine。有的地方,整个group就是一个大的papermachine。
个人感觉数据库研究者倾向于把数据挖掘看作一个数据库的子领域,因而对数据挖掘的会议rating较低。然而对其他背景的人而言,数据挖掘是相对独立的一个新兴领域,因而对其会议rating比较高。
SIGMOD:97分,数据库的最高会议,涉及范围广泛,稍偏应用(因为理论文章有PODS)。没说的,景仰如滔滔江水。这个会议不仅是double-blind review,而且有rebuttal procedure,可谓独树一帜,与众不同。
VLDB:95分,非常好的数据库会议。与SIGMOD类似,涉及范围广泛,稍偏应用。
从文章的质量来说,SIGMOD和VLDB难分伯仲,没有说谁比谁更高。他们的范围也几乎一样。不少牛人都认为,今年的rebuttal procedure其实并不怎么成功。投稿太多,很难做到每一篇都公平公正。很多rebuttal没人看。
double-blind是把双刃剑。这几