avatar
p*t
1
Bayes' theorem relates the conditional and marginal probabilities of
stochastic events A and B:
Pr(A|B) = {Pr(B|A)×Pr(A)}/{Pr(B)} = {L(A|B)×Pr(A)}/{Pr(B)}
where
L(A|B) = \Pr(B|A)
is the likelihood of A given B for a fixed value of B.
Each term in Bayes' theorem has a conventional name:
* Pr(A) is the prior probability or marginal probability of A. It is "
prior" in the sense that it does not take into account any information about B
.
* Pr(A|B) is the conditional probability of A, gi
avatar
a*r
2
洋文的咱看着太费劲。。。

')
0.
pH
the

【在 p********t 的大作中提到】
: Bayes' theorem relates the conditional and marginal probabilities of
: stochastic events A and B:
: Pr(A|B) = {Pr(B|A)×Pr(A)}/{Pr(B)} = {L(A|B)×Pr(A)}/{Pr(B)}
: where
: L(A|B) = \Pr(B|A)
: is the likelihood of A given B for a fixed value of B.
: Each term in Bayes' theorem has a conventional name:
: * Pr(A) is the prior probability or marginal probability of A. It is "
: prior" in the sense that it does not take into account any information about B
: .

avatar
p*t
3
国内没系统学过概率统计的(像我),最好还是直接按照英文学。中文Bayesian就翻译成
贝叶斯,加上一堆统计名词,看得我头昏脑涨的。

【在 a*******r 的大作中提到】
: 洋文的咱看着太费劲。。。
:
: ')
: 0.
: pH
: the

avatar
e*d
4
斑竹真好,是该法些英文的.扫一下英文盲.

B

【在 p********t 的大作中提到】
: Bayes' theorem relates the conditional and marginal probabilities of
: stochastic events A and B:
: Pr(A|B) = {Pr(B|A)×Pr(A)}/{Pr(B)} = {L(A|B)×Pr(A)}/{Pr(B)}
: where
: L(A|B) = \Pr(B|A)
: is the likelihood of A given B for a fixed value of B.
: Each term in Bayes' theorem has a conventional name:
: * Pr(A) is the prior probability or marginal probability of A. It is "
: prior" in the sense that it does not take into account any information about B
: .

相关阅读
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。