Redian新闻
>
大数相乘面试的时候是不是做到O(n^2)就行了?
avatar
大数相乘面试的时候是不是做到O(n^2)就行了?# JobHunting - 待字闺中
S*e
1
其他更快的方法好像挺复杂,有其他快而且在面试的时候可能想到并解释清楚的吗?
avatar
N*N
2
Karatsuba不算复杂,大约是n^(log2 3)

【在 S*******e 的大作中提到】
: 其他更快的方法好像挺复杂,有其他快而且在面试的时候可能想到并解释清楚的吗?
avatar
i*r
3
能把它写出来就不错了
avatar
H*r
4
现场写啊? 30分钟的话能写定简单版本不错了吧?如果是课后题方式那Toom-Cook还是
说的过去的。 FFT就复杂了...

【在 S*******e 的大作中提到】
: 其他更快的方法好像挺复杂,有其他快而且在面试的时候可能想到并解释清楚的吗?
avatar
S*e
5
这个的确不复杂,不过没听说过的话现想也不太现实啊

【在 N**N 的大作中提到】
: Karatsuba不算复杂,大约是n^(log2 3)
avatar
S*e
6
简单版本有这么复杂吗? 难道我们说的是不同方法?
我是说哪种最简单的
123 x 12,先做123x2,存到数组里,在做123x1,移位后加到数组里,10分钟差不多了把

【在 H****r 的大作中提到】
: 现场写啊? 30分钟的话能写定简单版本不错了吧?如果是课后题方式那Toom-Cook还是
: 说的过去的。 FFT就复杂了...

avatar
H*r
7
是这个意思,不过偶第一次还是写了30分钟,泪目...

【在 S*******e 的大作中提到】
: 简单版本有这么复杂吗? 难道我们说的是不同方法?
: 我是说哪种最简单的
: 123 x 12,先做123x2,存到数组里,在做123x1,移位后加到数组里,10分钟差不多了把

avatar
N*N
8
是的,我以为你是要准备,原来已经面过了,那没问题,你能10分钟写出来简单办法挺牛

【在 S*******e 的大作中提到】
: 这个的确不复杂,不过没听说过的话现想也不太现实啊
相关阅读
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。