Redian新闻
>
海美迪盒子泰捷,vst全聚合等看不了搜狐视频的源怎么解
avatar
海美迪盒子泰捷,vst全聚合等看不了搜狐视频的源怎么解# PDA - 掌中宝
p*3
1
谁给说说?
avatar
s*x
2
是因为海外IP的关系吗?改DNS可以破?
谢谢。
avatar
w*h
3
neural network

【在 p*********3 的大作中提到】
: 谁给说说?
avatar
t*y
4
搜狐没得看,没办法
avatar
f*e
5
仿生学。

【在 p*********3 的大作中提到】
: 谁给说说?
avatar
s*x
6
这样啊,我看好多新片都只有搜狐一个源,以为国内能看呢.
那改DNS是破解那个app的啊?

【在 t*******y 的大作中提到】
: 搜狐没得看,没办法
avatar
h*o
7
+1. it's just the buzzword for ANN.

【在 w*****h 的大作中提到】
: neural network
avatar
d*i
8
改dns就行了

【在 s******x 的大作中提到】
: 这样啊,我看好多新片都只有搜狐一个源,以为国内能看呢.
: 那改DNS是破解那个app的啊?

avatar
h*o
9
+1. it's just the buzzword for ANN.

【在 w*****h 的大作中提到】
: neural network
avatar
r*j
10
我试了改dns,好像还是不行,难道是我改错了?
谁帮忙再一发次改的DNS吧
avatar
j*t
11
本质是一个复杂的神经网络。
稍微具体点就是用很多层autoencoder或者restricted boltzmann machine叠起来做
feature learning,或许最后再加上一层neurons做supervised learning。
avatar
c*h
12
DNS1: 192.241.222.103
DNS2: 8.8.8.8

【在 r*****j 的大作中提到】
: 我试了改dns,好像还是不行,难道是我改错了?
: 谁帮忙再一发次改的DNS吧

avatar
A*c
13
就是原来层数太多算不出来的neural network现在上了平行GPU算出来了。

【在 p*********3 的大作中提到】
: 谁给说说?
avatar
a9
14
不要用dns2

【在 c*****h 的大作中提到】
: DNS1: 192.241.222.103
: DNS2: 8.8.8.8

avatar
c*t
15
就是neural network又一次挣扎。neural network蛋生后在实用中因为不同原因被彻底
灭了3次了。因为没有体系,没有理论去决定到底怎么个topology是最好的。做model本
来就优化,再加上topology也要优化,这问题无解。学术大牛可以靠这发paper,拉
funding,找上米的工作。实用中你老板没强迫或面试不用的话,没用

【在 p*********3 的大作中提到】
: 谁给说说?
avatar
c*h
16
为啥?

【在 a9 的大作中提到】
: 不要用dns2
avatar
s*w
17
这个不对吧?
现在的语音识别做的很好,据说都是用的 deep learning,比以前的 HMM 要好至少 15%
。如果没水分的话, 这是非常了不起的进步。

【在 c****t 的大作中提到】
: 就是neural network又一次挣扎。neural network蛋生后在实用中因为不同原因被彻底
: 灭了3次了。因为没有体系,没有理论去决定到底怎么个topology是最好的。做model本
: 来就优化,再加上topology也要优化,这问题无解。学术大牛可以靠这发paper,拉
: funding,找上米的工作。实用中你老板没强迫或面试不用的话,没用

avatar
b*e
18
小声问一句,我之前改了dns,跟楼上说的那样,看到是都能看了,点播也没什么大问
题。不过那些本身没有ip限制的,尤其是直播的,比如泰捷里头的cctv13频道,就会变
慢,总在缓冲。你们有这种现象么?
现在我再盒子上安了个ub翻墙,之前跟版上看到有人说的,速度倒是不错,不知道是啥
原理,难道是他们自己开了个dns之类的服务器/口??就跟unblock youku那样?
avatar
g*e
19

15%
HMM已经被淘汰了啊?

【在 s*w 的大作中提到】
: 这个不对吧?
: 现在的语音识别做的很好,据说都是用的 deep learning,比以前的 HMM 要好至少 15%
: 。如果没水分的话, 这是非常了不起的进步。

avatar
v*k
20
混合系统

【在 g*********e 的大作中提到】
:
: 15%
: HMM已经被淘汰了啊?

avatar
r*n
21
not replacing hmm, instead replacing gmm to work with hmm. Also it is not
simply adding more layers, there are several algorithms to make the deep
layer more trainable, e.g., rbm, hession, auto-encoder, etc.

【在 v*****k 的大作中提到】
: 混合系统
avatar
q*w
22
业界争议比较大。但是Google里这个很火
,有专门一个组做这个并提供api给其他组做machine learning的应用。

【在 p*********3 的大作中提到】
: 谁给说说?
avatar
v*k
23
我很看好。可以吃10年的技术

【在 q*****w 的大作中提到】
: 业界争议比较大。但是Google里这个很火
: ,有专门一个组做这个并提供api给其他组做machine learning的应用。

avatar
h*3
24
这种事情基本不靠谱。这种技术服务就是咨询,现在有好多新的咨询IT咨询公司专做这
个事情。咨询行业水很深,不是一个team可以做的。不过Google里面烂掉的项目,打酱
油的项目不计其数,反正也不在乎这个。

【在 v*****k 的大作中提到】
: 我很看好。可以吃10年的技术
avatar
l*e
25
thanks for this, finally see some reasonable post, hehe
btw, frankly speaking, most ppl here
(1) do not understand GMM & HMM (details, why, etc)
(2) do not understand the differences between NN and DL
(3) actually know nothing about DL, hehe
so ...

【在 r*****n 的大作中提到】
: not replacing hmm, instead replacing gmm to work with hmm. Also it is not
: simply adding more layers, there are several algorithms to make the deep
: layer more trainable, e.g., rbm, hession, auto-encoder, etc.

avatar
h*d
26
好像是需要和大数据结合作unsupervised learning,我有个大学同学很多年前在CMU写
过一个paper其实就这个东西,没想到过了这么多年火了。

【在 j*******t 的大作中提到】
: 本质是一个复杂的神经网络。
: 稍微具体点就是用很多层autoencoder或者restricted boltzmann machine叠起来做
: feature learning,或许最后再加上一层neurons做supervised learning。

avatar
p*3
27
尼玛,这个版上大多是码工,就只会做几道题
你要是问的深了,都不懂

【在 l**********e 的大作中提到】
: thanks for this, finally see some reasonable post, hehe
: btw, frankly speaking, most ppl here
: (1) do not understand GMM & HMM (details, why, etc)
: (2) do not understand the differences between NN and DL
: (3) actually know nothing about DL, hehe
: so ...

avatar
r*n
28
只是很多人在潜水吧,有谁是dbn的专家或着半路出家,请给我站内投条,共同探讨一
下, 个人认为这个领域很有意思

【在 p*********3 的大作中提到】
: 尼玛,这个版上大多是码工,就只会做几道题
: 你要是问的深了,都不懂

avatar
j*t
29
对啊,前面的很多层就是做unsupervised feature learning的。

【在 h*d 的大作中提到】
: 好像是需要和大数据结合作unsupervised learning,我有个大学同学很多年前在CMU写
: 过一个paper其实就这个东西,没想到过了这么多年火了。

avatar
f*e
30
QQ群上一坨一坨的,有hadoop的2k人群,相当活跃。

【在 r*****n 的大作中提到】
: 只是很多人在潜水吧,有谁是dbn的专家或着半路出家,请给我站内投条,共同探讨一
: 下, 个人认为这个领域很有意思

avatar
v*k
31
你做过吗?

【在 h********3 的大作中提到】
: 这种事情基本不靠谱。这种技术服务就是咨询,现在有好多新的咨询IT咨询公司专做这
: 个事情。咨询行业水很深,不是一个team可以做的。不过Google里面烂掉的项目,打酱
: 油的项目不计其数,反正也不在乎这个。

avatar
X*2
32
别整天一副别人都是傻子就你专家的样子。
你在这个话题上如果比别人懂得多的话,把你的深刻理解
写出来让大家学习学习,同时也可以让有识之士鉴别一下
你到底懂多少。

【在 l**********e 的大作中提到】
: thanks for this, finally see some reasonable post, hehe
: btw, frankly speaking, most ppl here
: (1) do not understand GMM & HMM (details, why, etc)
: (2) do not understand the differences between NN and DL
: (3) actually know nothing about DL, hehe
: so ...

avatar
r*g
34
做过一点,属于二五眼。随便说说:
1. ANN这个玩意,一段时间就会火一次,因为硬件进步,以前不能算的,现在能算了。
DNN就是如此,接GPU的东风。
2. ANN这个玩意,拿来做classifier怎么样?不怎么样。为啥?因为overfit,层数多
了,可以拟合任何函数,没有regularization,没有推广性。
3. 为啥DNN火了?因为大家不用DNN做classifier了,开始拿他做feature extractor,
结果一用就灵,DNN可以把很难classify的空间投影到容易classify的空间,然后LR,
SVM随便上吧,用啥啥灵,解救了多少白发Ph.D。
4. DNN以后会怎么样?会成为标准的feature engineering方法,classifier呢,该干
嘛还是干嘛。
另外,说Speech recognition DNN取代HMM,的确是没有理解ASR。在声学模型里,比较
成功的DNN取代的是GMM,而HMM的结构没有变。在语言模型上,成功的是Minkov的RNN,
虽然可以支持无限长的历史,但是也无法完全取代ngram,一般放到一起用。
相关阅读
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。