c*t
2 楼
easy. There is a scan line method.
Basically, let a horizontal line (or any arbitrary line, but horizontal
is easier computationally) go through the point. Then count the # of
interceptions of the curves on this line. If the point is inside the
curves, then the # of interceptions to the left of the point should be
odd.
,
【在 x*********l 的大作中提到】
: 请教大家一个算法的问题。在一个图像里有很多互相不相交的封闭曲线(任意形状),
: 如何判断任意一个点是在这些封闭曲线内,还是在曲线外?
Basically, let a horizontal line (or any arbitrary line, but horizontal
is easier computationally) go through the point. Then count the # of
interceptions of the curves on this line. If the point is inside the
curves, then the # of interceptions to the left of the point should be
odd.
,
【在 x*********l 的大作中提到】
: 请教大家一个算法的问题。在一个图像里有很多互相不相交的封闭曲线(任意形状),
: 如何判断任意一个点是在这些封闭曲线内,还是在曲线外?
x*l
4 楼
3x
【在 c*****t 的大作中提到】
: easy. There is a scan line method.
: Basically, let a horizontal line (or any arbitrary line, but horizontal
: is easier computationally) go through the point. Then count the # of
: interceptions of the curves on this line. If the point is inside the
: curves, then the # of interceptions to the left of the point should be
: odd.
:
: ,
【在 c*****t 的大作中提到】
: easy. There is a scan line method.
: Basically, let a horizontal line (or any arbitrary line, but horizontal
: is easier computationally) go through the point. Then count the # of
: interceptions of the curves on this line. If the point is inside the
: curves, then the # of interceptions to the left of the point should be
: odd.
:
: ,
l*u
5 楼
Sounds good. The only thing is that one needs to be careful in determining
if the line is intersecting, not just tangent, with the curve.
【在 c*****t 的大作中提到】
: easy. There is a scan line method.
: Basically, let a horizontal line (or any arbitrary line, but horizontal
: is easier computationally) go through the point. Then count the # of
: interceptions of the curves on this line. If the point is inside the
: curves, then the # of interceptions to the left of the point should be
: odd.
:
: ,
if the line is intersecting, not just tangent, with the curve.
【在 c*****t 的大作中提到】
: easy. There is a scan line method.
: Basically, let a horizontal line (or any arbitrary line, but horizontal
: is easier computationally) go through the point. Then count the # of
: interceptions of the curves on this line. If the point is inside the
: curves, then the # of interceptions to the left of the point should be
: odd.
:
: ,
相关阅读
我老婆是大学教授,教编程入门课,学生普遍难以理解变量scala成功阻挡了3哥的步伐rx framework / rxJava use case?spark看了一边 没什么难点啊。7天掌握Nature文章PICK UP PYTHONWeb技术日报 2015年2月楼对 (im)mutability 的误解和深度理解问两个C++语法问题买了辆好车, 就敢去取笑修路工人苦逼?Spring question点击窗口关闭,保存文件java 8 也可以fp啊其实想学就学fp,不学就算了想做个网站主要面向国内,请问怎么选服务器 (转载)java8 lambda 就是语法糖Django这个framework怎样?js 支持 arrow function了java substring这货竟然不是subString.公司每天拿cpp11新特性装b的都是傻逼。huaren大妈断言:湾区软件公司的工资水平撑不了几年了 (转载)