Redian新闻
>
原来count(*)就是我们系统的接口性能变差100倍的真凶…

原来count(*)就是我们系统的接口性能变差100倍的真凶…

公众号新闻

点击上方“芋道源码”,选择“设为星标

管她前浪,还是后浪?

能浪的浪,才是好浪!

每天 10:33 更新文章,每天掉亿点点头发...

源码精品专栏

 
来源:苏三说技术

前言

最近我在公司优化过几个慢查询接口的性能,总结了一些心得体会拿出来跟大家一起分享一下,希望对你会有所帮助。

我们使用的数据库是Mysql8,使用的存储引擎是Innodb。这次优化除了优化索引之外,更多的是在优化count(*)

通常情况下,分页接口一般会查询两次数据库,第一次是获取具体数据,第二次是获取总的记录行数,然后把结果整合之后,再返回。

查询具体数据的sql,比如是这样的:`

select id,name from user limit 1,20;

它没有性能问题。

但另外一条使用count(*)查询总记录行数的sql,例如:

select count(*) from user;

却存在性能差的问题。

为什么会出现这种情况呢?

基于 Spring Boot + MyBatis Plus + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能

  • 项目地址:https://github.com/YunaiV/ruoyi-vue-pro
  • 视频教程:https://doc.iocoder.cn/video/

1 count(*)为什么性能差?

在Mysql中,count(*)的作用是统计表中记录的总行数。

count(*)的性能跟存储引擎有直接关系,并非所有的存储引擎,count(*)的性能都很差。

在Mysql中使用最多的存储引擎是:innodbmyisam

在myisam中会把总行数保存到磁盘上,使用count(*)时,只需要返回那个数据即可,无需额外的计算,所以执行效率很高。

而innodb则不同,由于它支持事务,有MVCC(即多版本并发控制)的存在,在同一个时间点的不同事务中,同一条查询sql,返回的记录行数可能是不确定的。

在innodb使用count(*)时,需要从存储引擎中一行行的读出数据,然后累加起来,所以执行效率很低。

如果表中数据量小还好,一旦表中数据量很大,innodb存储引擎使用count(*)统计数据时,性能就会很差。

基于 Spring Cloud Alibaba + Gateway + Nacos + RocketMQ + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能

  • 项目地址:https://github.com/YunaiV/yudao-cloud
  • 视频教程:https://doc.iocoder.cn/video/

2 如何优化count(*)性能?

从上面得知,既然count(*)存在性能问题,那么我们该如何优化呢?

我们可以从以下几个方面着手。

2.1 增加redis缓存

对于简单的count(*),比如:统计浏览总次数或者浏览总人数,我们可以直接将接口使用redis缓存起来,没必要实时统计。

当用户打开指定页面时,在缓存中每次都设置成count = count+1即可。

用户第一次访问页面时,redis中的count值设置成1。用户以后每访问一次页面,都让count加1,最后重新设置到redis中。这样在需要展示数量的地方,从redis中查出count值返回即可。

该场景无需从数据埋点表中使用count(*)实时统计数据,性能将会得到极大的提升。

不过在高并发的情况下,可能会存在缓存和数据库的数据不一致的问题。

但对于统计浏览总次数或者浏览总人数这种业务场景,对数据的准确性要求并不高,容忍数据不一致的情况存在。

2.2 加二级缓存

对于有些业务场景,新增数据很少,大部分是统计数量操作,而且查询条件很多。这时候使用传统的count(*)实时统计数据,性能肯定不会好。

假如在页面中可以通过id、name、状态、时间、来源等,一个或多个条件,统计品牌数量。

这种情况下用户的组合条件比较多,增加联合索引也没用,用户可以选择其中一个或者多个查询条件,有时候联合索引也会失效,只能尽量满足用户使用频率最高的条件增加索引。

也就是有些组合条件可以走索引,有些组合条件没法走索引,这些没法走索引的场景,该如何优化呢?

答:使用二级缓存

二级缓存其实就是内存缓存。

我们可以使用caffine或者guava实现二级缓存的功能。

目前SpringBoot已经集成了caffine,使用起来非常方便。

只需在需要增加二级缓存的查询方法中,使用@Cacheable注解即可。

 @Cacheable(value = "brand", , keyGenerator = "cacheKeyGenerator")
   public BrandModel getBrand(Condition condition) {
       return getBrandByCondition(condition);
   }

然后自定义cacheKeyGenerator,用于指定缓存的key。

public class CacheKeyGenerator implements KeyGenerator {
    @Override
    public Object generate(Object target, Method method, Object... params) {
        return target.getClass().getSimpleName() + UNDERLINE
                + method.getName() + ","
                + StringUtils.arrayToDelimitedString(params, ",");
    }
}

这个key是由各个条件组合而成。

这样通过某个条件组合查询出品牌的数据之后,会把结果缓存到内存中,设置过期时间为5分钟。

后面用户在5分钟内,使用相同的条件,重新查询数据时,可以直接从二级缓存中查出数据,直接返回了。

这样能够极大的提示count(*)的查询效率。

但是如果使用二级缓存,可能存在不同的服务器上,数据不一样的情况。我们需要根据实际业务场景来选择,没法适用于所有业务场景。

2.3 多线程执行

不知道你有没有做过这样的需求:统计有效订单有多少,无效订单有多少。

这种情况一般需要写两条sql,统计有效订单的sql如下:

select count(*) from order where status=1;

统计无效订单的sql如下:

select count(*) from order where status=0;

但如果在一个接口中,同步执行这两条sql效率会非常低。

这时候,可以改成成一条sql:

select count(*),status from order
group by status;

使用group by关键字分组统计相同status的数量,只会产生两条记录,一条记录是有效订单数量,另外一条记录是无效订单数量。

但有个问题:status字段只有1和0两个值,重复度很高,区分度非常低,不能走索引,会全表扫描,效率也不高。

还有其他的解决方案不?

答:使用多线程处理。

我们可以使用CompleteFuture使用两个线程异步调用统计有效订单的sql和统计无效订单的sql,最后汇总数据,这样能够提升查询接口的性能。

2.4 减少join的表

大部分的情况下,使用count(*)是为了实时统计总数量的。

但如果表本身的数据量不多,但join的表太多,也可能会影响count(*)的效率。

比如在查询商品信息时,需要根据商品名称、单位、品牌、分类等信息查询数据。

这时候写一条sql可以查出想要的数据,比如下面这样的:

select count(*)
from product p
inner join unit u on p.unit_id = u.id
inner join brand b on p.brand_id = b.id
inner join category c on p.category_id = c.id
where p.name='测试商品' and u.id=123 and b.id=124 and c.id=125;

使用product表去join了unit、brand和category这三张表。

其实这些查询条件,在product表中都能查询出数据,没必要join额外的表。

我们可以把sql改成这样:

select count(*)
from product
where name='测试商品' and unit_id=123 and brand_id=124 and category_id=125;

在count(*)时只查product单表即可,去掉多余的表join,让查询效率可以提升不少。

2.5 改成ClickHouse

有些时候,join的表实在太多,没法去掉多余的join,该怎么办呢?

比如上面的例子中,查询商品信息时,需要根据商品名称、单位名称、品牌名称、分类名称等信息查询数据。

这时候根据product单表是没法查询出数据的,必须要去join:unit、brand和category这三张表,这时候该如何优化呢?

答:可以将数据保存到ClickHouse

ClickHouse是基于列存储的数据库,不支持事务,查询性能非常高,号称查询十几亿的数据,能够秒级返回。

为了避免对业务代码的嵌入性,可以使用Canal监听Mysqlbinlog日志。当product表有数据新增时,需要同时查询出单位、品牌和分类的数据,生成一个新的结果集,保存到ClickHouse当中。

查询数据时,从ClickHouse当中查询,这样使用count(*)的查询效率能够提升N倍。

需要特别提醒一下:使用ClickHouse时,新增数据不要太频繁,尽量批量插入数据。

其实如果查询条件非常多,使用ClickHouse也不是特别合适,这时候可以改成ElasticSearch,不过它跟Mysql一样,存在深分页问题。

3 count的各种用法性能对比

既然说到count(*),就不能不说一下count家族的其他成员,比如:count(1)、count(id)、count(普通索引列)、count(未加索引列)。

那么它们有什么区别呢?

  • count(*) :它会获取所有行的数据,不做任何处理,行数加1。
  • count(1):它会获取所有行的数据,每行固定值1,也是行数加1。
  • count(id):id代表主键,它需要从所有行的数据中解析出id字段,其中id肯定都不为NULL,行数加1。
  • count(普通索引列):它需要从所有行的数据中解析出普通索引列,然后判断是否为NULL,如果不是NULL,则行数+1。
  • count(未加索引列):它会全表扫描获取所有数据,解析中未加索引列,然后判断是否为NULL,如果不是NULL,则行数+1。

由此,最后count的性能从高到低是:

count(*) ≈ count(1) > count(id) > count(普通索引列) > count(未加索引列)

所以,其实count(*)是最快的。

意不意外,惊不惊喜?

千万别跟select * 搞混了。



欢迎加入我的知识星球,一起探讨架构,交流源码。加入方式,长按下方二维码噢

已在知识星球更新源码解析如下:

最近更新《芋道 SpringBoot 2.X 入门》系列,已经 101 余篇,覆盖了 MyBatis、Redis、MongoDB、ES、分库分表、读写分离、SpringMVC、Webflux、权限、WebSocket、Dubbo、RabbitMQ、RocketMQ、Kafka、性能测试等等内容。

提供近 3W 行代码的 SpringBoot 示例,以及超 4W 行代码的电商微服务项目。

获取方式:点“在看”,关注公众号并回复 666 领取,更多内容陆续奉上。

文章有帮助的话,在看,转发吧。

谢谢支持哟 (*^__^*)

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
支付设计白皮书:支付系统的对账系统设计发现了比​Grammarly好用10倍的神器,我写出了一稿过的英语论文!在美国246.要小孩、轰我走、上天堂【黑五价】Mountain Warehouse低至3折+满额再减$10每秒1000000000000000000次运算!Cerebras新超级计算机打造世界最大1350万核心AI集群自动增量计算:构建高性能数据分析系统的任务编排从11s到170ms!看看人家的接口优化技巧,那叫一个优雅!发现了比商学院Casebook好用10倍的面试真经,我1个月上岸BCG市场增速超20%,国产操作系统“浴火重生” | 解读操作系统的 2022这套10年翻了10倍的绝版好书逛大农村6: 国家空军博物馆 (多图)绝!比Grammarly好用10倍的神器,让我写出了一稿过的高分论文发现了商学院Casebook好用10倍的面试真经,我1个月上岸BCG效率加倍,高并发场景下的接口请求合并方案海量请求下的接口并发解决方案绝!比Grammarly好用10倍的神器,让我写出了一稿过的EssayA16z第一支Web3基金业绩被曝光:10倍的回报绝!比商学院Casebook好用10倍的面试真经,让我1个月上岸BCG比护手霜强100倍的【日本叮叮皴裂膏】到底有多好用?网友:“只要不停产,就会一直回购!”国内团1分钟爆卖10000瓶!▶百年大危机降临,这才是美国衰落的真正原因!原来是我们把它想太好了!Young Chinese Are Overdosing on Cough Meds to Combat Stress一位韩籍半导体技术专家的中国志业——智现未来COO李世元访谈比风水厉害100倍的惊人定律!(值得多看几遍)物理改变图像生成:扩散模型启发于热力学,比它速度快10倍的挑战者来自电动力学1天能筛20篇!我发现了效率高1000倍的赶Due“神器”让平价中餐瞬间贵10倍的网红风,怎么又多了一个比钙片强10倍的营养食材,拉丝效果无敌!口感细腻、不苦不涩光伏市场持续升温,10年50倍的隆基绿能未来如何?浅论华夏地理文明史程序员新人频繁使用count(*),被组长批评后怒怼:性能并不拉垮!今晨,我偷偷乐!比护手霜强100倍的【日本叮叮皴裂膏】到底有多好用?Cities Offer Huge ‘Group Buying’ Discounts on Unsold Properties江泽民于中共20大前露脸: 中国的凶兆Ousted Luckin Founder Charts Comeback With New Coffee Business
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。