Redian新闻
>
一个比ClickHouse还快的开源数据库

一个比ClickHouse还快的开源数据库

公众号新闻
开源分析数据库 ClickHouse 以快著称,真的如此吗?我们通过对比测试来验证一下。

ClickHouse vs Oracle

先用 ClickHouse(简称 CH)、Oracle 数据库(简称 ORA)一起在相同的软硬件环境下做对比测试。测试基准使用国际广泛认可的 TPC-H,针对 8 张表,完成 22 条 SQL 语句定义的计算需求(Q1 到 Q22)。测试采用单机 12 线程,数据总规模 100G。TPC-H 对应的 SQL 都比较长,这里就不详细列出了。
Q1 是简单的单表遍历计算分组汇总,对比测试结果如下:
CH 计算 Q1 的表现要好于 ORA,说明 CH 的列式存储做得不错,单表遍历速度很快。而 ORA 主要吃亏在使用了行式存储,明显要慢得多了。
但是,如果我们加大计算复杂度,CH 的表现怎么样呢?继续看 TPC-H 的 Q2、Q3、Q7,测试结果如下:
计算变得复杂之后,CH 性能出现了明显的下降。Q2 涉及数据量较少,列存作用不大,CH 性能和 ORA 几乎一样。Q3 数据量较大,CH 占了列存的便宜后超过了 ORA。Q7 数据也较大,但是计算复杂,CH 性能还不如 ORA。
做复杂计算快不快,主要看性能优化引擎做的好不好。CH 的列存占据了巨大的存储优势,但竟然被 ORA 用行式存储赶上,这说明 CH 的算法优化能力远不如 ORA。
TPC-H 的 Q8 是更复杂一些的计算,子查询中有多表连接,CH 跑了 2000 多秒还没有出结果,应该是卡死了,ORA 跑了 192 秒。Q9 在 Q8 的子查询中增加了 like,CH 直接报内存不足的错误了,ORA 跑了 234 秒。其它还有些复杂运算是 CH 跑不出来的,就没法做个总体比较了。
CH 和 ORA 都基于 SQL 语言,但是 ORA 能优化出来的语句,CH 却跑不出来,更证明 CH 的优化引擎能力比较差。
坊间传说,CH 只擅长做单表遍历运算,有关联运算时甚至跑不过 MySQL,看来并非虚妄胡说。想用 CH 的同学要掂量一下了,这种场景到底能有多大的适应面?

esProc SPL 登场

开源 esProc SPL 也是以高性能作为宣传点,那么我们再来比较一下。
仍然是跑 TPC-H 来看 :
Q2、Q3、Q7 这些较复杂的运算,SPL 比 CH 和 ORA 跑的都快。CH 跑不出结果的 Q8、Q9,SPL 分别跑了 37 秒和 68 秒,也比 ORA 快。原因在于 SPL 可以采用更优的算法,其计算复杂度低于被 ORA 优化过的 SQL,更远低于 CH 执行的 SQL,再加上列存,最终是用 Java 开发的 SPL 跑赢了 C++ 实现的 CH 和 ORA。
大概可以得到结论,esProc SPL 无论做简单计算,还是复杂计算性能都非常好。
不过,Q1 这种简单运算,CH 比 SPL 还是略胜了一筹。似乎可以进一步证明前面的结论,即 CH 特别擅长简单遍历运算。
且慢,SPL 还有秘密武器。
SPL 的企业版中提供了列式游标机制,我们再来对比测试一下:在 8 亿条数据量下,做最简单的分组汇总计算,对比 SPL(使用列式游标)和 CH 的性能。(采用的机器配置比前面做 TPC-H 测试时略低,因此测出的结果不同,不过这里主要看相对值。)
简单分组汇总对应 CH 的 SQL 语句是:
SQL1:
SELECT mod(id, 100) AS Aid, max(amount) AS AmaxFROM test.tGROUP BY mod(id, 100)
这个测试的结果是下图这样:
SPL 使用列式游标机制之后,简单遍历分组计算的性能也和 CH 一样了。如果在 TPC-H 的 Q1 测试中也使用列式游标,SPL 也会达到和 CH 同样的性能。
测试过程中发现,8 亿条数据存成文本格式占用磁盘 15G,在 CH 中占用 5.4G,SPL 占用 8G。说明 CH 和 SPL 都采用了压缩存储,CH 的压缩比更高些,也进一步证明 CH 的存储引擎做得确实不错。不过,SPL 也可以达到和 CH 同样的性能,这说明 SPL 存储引擎和算法优化做得都比较好,高性能计算能力更加均衡。
当前版本的 SPL 是用 Java 写的,Java 读数后生成用于计算的对象的速度很慢,而用 C++ 开发的 CH 则没有这个问题。对于复杂的运算,读数时间占比不高,Java 生成对象慢造成的拖累还不明显;而对于简单的遍历运算,读数时间占比很高,所以前面测试中 SPL 就会比 CH 更慢。列式游标优化了读数方案,不再生成一个个小对象,使对象生成次数大幅降低,这时候就能把差距拉回来了。单纯从存储本身看,SPL 和 CH 相比并没有明显的优劣之分。
接下来再看常规 TopN 的对比测试,CH 的 SQL 是:
SQL2:
SELECT * FROM test.t ORDER BY amount DESC LIMIT 100
对比测试结果是这样的:
单看 CH 的 SQL2,常规 TopN 的计算方法是全排序后取出前 N 条数据。数据量很大时,如果真地做全排序,性能会非常差。SQL2 的测试结果说明,CH 应该和 SPL 一样做了优化,没有全排序,所以两者性能都很快,SPL 稍快一些。
也就是说,无论简单运算还是复杂运算,esProc SPL 都能更胜一筹。

进一步的差距

差距还不止于此。
正如前面所说,CH 和 ORA 使用 SQL 语言,都是基于关系模型的,所以都面临 SQL 优化的问题。TPC-H 测试证明,ORA 能优化的一些场景 CH 却优化不了,甚至跑不出结果。那么,如果面对一些 ORA 也不会优化的计算,CH 就更不会优化了。比如说我们将 SQL1 的简单分组汇总,改为两种分组汇总结果再连接,CH 的 SQL 写出来大致是这样:
SQL3:
SELECT *FROM (   SELECT mod(id, 100) AS Aid, max(amount) AS Amax   FROM test.t   GROUP BY mod(id, 100)  ) A   JOIN (   SELECT floor(id / 200000AS Bid, min(amount) AS Bmin   FROM test.t   GROUP BY floor(id / 200000)  ) B   ON A.Aid = B.Bid

这种情况下,对比测试的结果是 CH 的计算时间翻倍,SPL 则不变:

这是因为 SPL 不仅使用了列式游标,还使用了遍历复用机制,能在一次遍历过程中计算出多种分组结果,可以减少很多硬盘访问量。CH 使用的 SQL 无法写出这样的运算,只能靠 CH 自身的优化能力了。而 CH 算法优化能力又很差,其优化引擎在这个测试中没有起作用,只能遍历两次,所以性能下降了一倍。
SPL 实现遍历复用的代码很简单,大致是这样:

AB
1=file("topn.ctx").open().cursor@mv(id,amount)
2cursor A1=A2.groups(id%100:Aid;max(amount):Amax)
3cursor=A3.groups(id\200000:Bid;min(amount):Bmin)
4=A2.join@i(Aid,A3:Bid,Bid,Bmin)

再将 SQL2 常规 TopN 计算,调整为分组后求组内 TopN。对应 SQL 是:

SQL4:
SELECT  gid,  groupArray(100)(amount) AS amountFROM(      SELECT    mod(id, 10) AS gid,    amount      FROM test.topn      ORDER BY    gid ASC,    amount DESCAS aGROUP BY gid

个分组 TopN 测试的对比结果是下面这样的:

CH 做分组 TopN 计算比常规 TopN 慢了 42 倍,说明 CH 在这种情况下很可能做了排序动作。也就是说,情况复杂化之后,CH 的优化引擎又不起作用了。与 SQL 不同,SPL 把 TopN 看成是一种聚合运算,和 sum、count 这类运算的计算逻辑是一样的,都只需要对原数据遍历一次。这样,分组求组内 TopN 就和分组求和、计数一样了,可以避免排序计算。因此,SPL 计算分组 TopN 比 CH 快了 22 倍。
而且,SPL 计算分组 TopN 的代码也不复杂:

A
1=file("topn.ctx").open().cursor@mv(id,amount)
2=A1.groups(id%10:gid;top(10;-amount)).news(#2;gid,~.amount)

不只是跑得快

再来看看电商系统中常见的漏斗运算。SPL 的代码依然很简洁:

AB
1=["etype1","etype2","etype3"]=file("event.ctx").open()
2=B1.cursor(id,etime,etype;etime>=date("2021-01-10") && etime<date("2021-01-25") && A1.contain(etype) && …)
3=A2.group(id).(~.sort(etime))=A3.new(~.select@1(etype==A1(1)):first,~:all).select(first)
4=B3.(A1.(t=if(#==1,t1=first.etime,if(t,all.select@1(etype==A1.~ && etime>t && etime<t1+7).etime, null))))
5=A4.groups(;count(~(1)):STEP1,count(~(2)):STEP2,count(~(3)):STEP3)

CH 的 SQL 无法实现这样的计算,我们以 ORA 为例看看三步漏斗的 SQL 写法:

with e1 as (    select gid,1 as step1,min(etime) as t1    from T    where etime>= to_date('2021-01-10', 'yyyy-MM-dd') and etime<to_date('2021-01-25', 'yyyy-MM-dd')        and eventtype='eventtype1' and  group by 1),with e2 as (    select gid,1 as step2,min(e1.t1) as t1,min(e2.etime) as t2    from T as e2    inner join e1 on e2.gid = e1.gid    where e2.etime>= to_date('2021-01-10', 'yyyy-MM-dd') and e2.etime<to_date('2021-01-25', 'yyyy-MM-dd')     and e2.etime > t1        and e2.etime < t1 + 7    and eventtype='eventtype2' and  group by 1),with e3 as (    select gid,1 as step3,min(e2.t1) as t1,min(e3.etime) as t3    from T as e3    inner join e2 on e3.gid = e2.gid    where e3.etime>= to_date('2021-01-10', 'yyyy-MM-dd') and e3.etime<to_date('2021-01-25', 'yyyy-MM-dd')     and e3.etime > t2        and e3.etime < t1 + 7    and eventtype='eventtype3' and  group by 1)select  sum(step1) as step1,    sum(step2) as step2,    sum(step3) as step3from  e1    left join e2 on e1.gid = e2.gid    left join e3 on e2.gid = e3.gid
ORA 的 SQL 写出来要三十多行,理解起来有相当的难度。而且这段代码和漏斗的步骤数量相关,每增加一步数就要再增加一段子查询。相比之下,SPL 就简单得多,处理任意步骤数都是这段代码。
这种复杂的 SQL,写出来都很费劲,性能优化更无从谈起。
而 CH 的 SQL 还远不如 ORA,基本上写不出这么复杂的逻辑,只能在外部写 C++ 代码实现。也就是说,这种情况下只能利用 CH 的存储引擎。虽然用 C++ 在外部计算有可能获得很好的性能,但开发成本非常高。类似的例子还有很多,CH 都无法直接实现。

总结一下:CH 计算某些简单场景(比如单表遍历)确实很快,和 SPL 的性能差不多。但是,高性能计算不能只看简单情况快不快,还要权衡各种场景。对于复杂运算而言,SPL 不仅性能远超 CH,代码编写也简单很多。SPL 能覆盖高性能数据计算的全场景,可以说是完胜 CH。



重磅!开源SPL交流群成立了

简单好用的SPL开源啦!

为了给感兴趣的技术人员提供一个相互交流的平台,

特地开通了交流群(群完全免费,不广告不卖课)

需要进群的朋友,可长按扫描下方二维码

本文感兴趣的朋友,请到阅读原文去收藏 ^_^

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
面试官:数据库日期类型字段,需要兼容不同数据库,应该如何选择?我在Krefeld (1)Andy教授解读数据库的2022:大规模数据库投资大幅放缓、区块链数据库仍然是一个愚蠢的想法世界上最快的内存数据库横空出世,比 Redis 快 25 倍,Star 数飙升,杀疯了!低配版科技馆真实评测:带娃逛Markham Museum房产投资——美国买房,选择HOUSE还是CONDO,看完这一篇不用再纠结Rosalía 登意大利版《VOGUE》封面!Ousted Luckin Founder Charts Comeback With New Coffee Business“吊打” ClickHouse,火山引擎数仓 SQL 查询性能 10x 提升!谷歌机器人迈入「交互语言」新纪元!开放命令正确率高达93.5%,开源数据量提升十倍火山引擎:ClickHouse增强计划之“多表关联查询”最后机会!Mountain Warehouse低至3折+额外9折2022 年数据库发展总结:中国和海外数据库差距还有多远?数据烟囱亟需打破,云原生融合数据库雪中送炭|解读云原生数据库的 2022没见过辞职比我写文章还快的首相!作为 Clubhouse 的首位社区负责人,我学到了这些创业经验多款数据库入选 Gartner 全球数据库魔力象限,腾讯云是怎么做到的?| Q推荐数据库“焕然新生”:架构视角下,云原生数据库的创新实践 | Q推荐【黑五价】Mountain Warehouse低至3折+满额再减$10这个云数仓,居然比ClickHouse还快三倍ByteHouse实践与思考:如何补全ClickHouse高可用短板?李大眼:我们都是神农的后裔盘点5大技术板块、洞察56个开源项目:InfoQ研究中心带你探秘中国开源数据库争相上市、抢夺本土市场,未来三五年数据库将迎来大洗牌 | 解读数据库的2022Mountain Warehouse抓绒保暖衣清仓 2件$30国产数据库市场横空杀出个巨头?亚信 AntDB数据库凭什么我在Krefeld (2)强盗的逻辑中秋十五月,寒露十三夜北美开年的欢笑,必须被脱口秀承包! 快来现场看李诞、毛豆、豆豆、小鹿、杨蒙恩、梁海源、Rock、House、小北、Kid!降温必备!Mountain Warehouse保暖背心低至$26又一巨头宣布入局AIGC,一口气开源数个模型,还道出了它的变现之道火山引擎:ClickHouse增强计划之“资源隔离”Mountain Warehouse超轻保暖夹克低至$44.99阿里云已将 Serverless 数据库大规模落地,这是否代表着数据库的新风向?
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。