西电 NeurIPS 2022 | 基于结构聚类的异质图自监督学习
论文作者丨杨亚明,管子玉,王哲,赵伟,徐偲,陆维港,黄健斌
论文单位丨西安电子科技大学,计算机科学与技术学院
现阶段,图(Graph)上的自监督学习大多都遵循图对比学习框架,这些方法通常需要先构造一系列的正样本对以及负样本对,然后通过在低维表示空间中拉近正样本并且推远负样本来学习节点/图的表示。
目前,研究者们已经探索了节点丢弃、连边扰动等各种生成正样本的策略,以及特征打乱、批次采样等各种生成负样本的策略。然而,已有研究工作表明,这些正、负样本的生成策略是数据集敏感的。
例如,GraphCL 通过系统性的研究发现连边扰动对社交网络比较有益,但是对生物化学网络可能有负面作用。InfoGCL 发现负样本对于更稀疏的图可能更有益。因此,在实践中,研究者们需要根据数据集以及手头任务的实际情况来探索、寻找合适的构造正、负样本的策略,这限制了已有方法的灵活性与泛化性。为了有效地应对这个问题,在本项研究中,我们提出一个基于结构聚类的异质图自监督学习方法SHGP,它无需任何正样本或者负样本。
我们将模型学习到的节点表示进行可视化。首先利用t-SNE算法将节点的表示向量映射到二维欧式空间,然后利用matplotlib将其进行可视化,并根据节点的真实标签对其进行染色。图3中展示了可视化结果,可以看到,SHGP的每个类都有着很好的内聚性,而类与类之间的界限非常清晰光滑。这说明SHGP能够在不需要任何真实标签的情况下,有效地学习到具有判别性的节点表示。
更多内容,点击下方关注:
未经「AI科技评论」授权,严禁以任何方式在网页、论坛、社区进行转载!
公众号转载请先在「AI科技评论」后台留言取得授权,转载时需标注来源并插入本公众号名片。
未经「AI科技评论」授权,严禁以任何方式在网页、论坛、社区进行转载!
公众号转载请先在「AI科技评论」后台留言取得授权,转载时需标注来源并插入本公众号名片。
微信扫码关注该文公众号作者
戳这里提交新闻线索和高质量文章给我们。
来源: qq
点击查看作者最近其他文章