Redian新闻
>
ByConity与主流开源OLAP引擎(Clickhouse、Doris、Presto)性能对比分析

ByConity与主流开源OLAP引擎(Clickhouse、Doris、Presto)性能对比分析

公众号新闻

作者|王蕴博
随着数据量和数据复杂性的不断增加,越来越多的企业开始使用 OLAP(联机分析处理)引擎来处理大规模数据并提供即时分析结果。在选择 OLAP 引擎时,性能是一个非常重要的因素。因此,本文将使用 TPC-DS 基准测试的 99 个查询语句来对比开源的 ClickHouse、Doris、Presto 以及 ByConity 这 4 个 OLAP 引擎的性能表现,以便为企业选择合适的 OLAP 引擎提供参考。
TPC-DS 基准测试简介

TPC-DS(Transaction Processing Performance Council Decision Support Benchmark)是一个面向决策支持系统(Decision Support System,简称 DSS)的基准测试,该工具是由 TPC 组织开发,它模拟了多维分析和决策支持场景,并提供了 99 个查询语句,用于评估数据库系统在复杂的多维分析场景下的性能。每个查询都设计用于模拟复杂的决策支持场景,包括跨多个表的连接、聚合和分组、子查询等高级 SQL 技术。

OLAP 引擎介绍

ClickHouse、Doris、Presto 和 ByConity 都是当前比较流行的开源 OLAP 引擎,它们都具有高性能和可扩展性的特点。

  • ClickHouse 是由俄罗斯搜索引擎公司 Yandex 开发的一个列式数据库管理系统,它专注于大规模数据的快速查询和分析。

  • Doris 是一个分布式列式存储和分析系统,它支持实时查询和分析,并可以与 Hadoop、Spark 和 Flink 等大数据技术进行集成。

  • Presto 是一个分布式 SQL 查询引擎,它由 Facebook 开发,可以在大规模数据集上进行快速查询和分析。

  • ByConity 是由字节开源的云原生数仓,采用了存储计算分离的架构,实现租户资源隔离、弹性扩缩容,并具有数据读写的强一致性等特性,它支持主流的 OLAP 引擎优化技术,读写性能非常优异。

文将使用这四个 OLAP 引擎对 TPC-DS 基准测试的 99 个查询语句进行性能测试,并对比它们在不同类型的查询中的性能差异。

测试环境和方法
测试环境配置:
服务器配置:
Architecture:          x86_64CPU op-mode(s):        32-bit, 64-bitByte Order:            Little EndianCPU(s):                48On-line CPU(s) list:   0-47Thread(s) per core:    2Core(s) per socket:    12Socket(s):             2NUMA node(s):          2Vendor ID:             GenuineIntelCPU family:            6Model:                 79Model name:            Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHzStepping:              1CPU MHz:               2494.435CPU max MHz:           2900.0000CPU min MHz:           1200.0000BogoMIPS:              4389.83Virtualization:        VT-xL1d cache:             32KL1i cache:             32KL2 cache:              256KL3 cache:              30720KNUMA node0 CPU(s):     0-11,24-35NUMA node1 CPU(s):     12-23,36-47

测试方法:

  • 使用 TPC-DS 基准测试的 99 个查询语句,和 1TB(28 亿行)的数据测试 4 个 OLAP 引擎的性能。

  • 在每个引擎中使用相同的测试数据集,并保持相同的配置和硬件环境。

  • 对于每个查询,多次执行并取平均值,以减少测量误差,设置每次查询超时时间为 500 秒。

  • 记录查询执行的细节,例如查询执行计划、I/O 和 CPU 使用情况等。

性能测试结果

我们使用了相同的数据集和硬件环境来测试这四个 OLAP 引擎的性能。测试数据集大小为 1TB,硬件和软件环境如上介绍,我们使用了 TPC-DS 基准测试中的 99 个查询语句分别在四个 OLAP 引擎上进行了连续三次的测试,并取三次平均结果。其中 ByConity 跑通了所有 99 个查询测试。Doris 在 SQL15 出现 Crash,另外有 4 次的 Timeout,分别是 SQL54、SQL67、SQL78 和 SQL95。Presto 只在 SQL67 和 SQL72 发生 Timeout,其他查询测试都跑通了。而 Clickhouse 只跑通了 50% 的查询语句,大概有一部分是 Timeout,另一部分是系统报错,分析原因是 Clickhouse 不能有效的支持多表关联查询导致,只能把这类 SQL 语句做手动改写拆分才能执行。因此在对比总耗时我们暂时排除 Clickhouse,其他三个 OLAP 引擎 TPC-DS 测试总耗时如下图 1 所示,从图 1 中我们可以看出开源的 ByConity 查询性能明显优于其他引擎,性能约是其他的 3-4 倍。(注:以下所有图表纵坐标单位为秒)

图 1 TPC-DS 99 条查询总耗时

针对 TPC-DS 基准测试的 99 个查询语句,我们接下来按照查询场景的不同进行分类,例如基础查询、连接查询、聚合查询、子查询、窗口函数查询等。下面我们将使用这些分类方式来对 ClickHouse、Doris、Presto 和 ByConity 四个 OLAP 引擎进行性能分析对比:

基础查询场景下

该场景包含简单的查询操作,例如从单个表中查询数据,过滤和排序结果等。基础查询的性能测试主要关注处理单个查询的能力。其中 ByConity 的表现最佳,Presto 和 Doris 的性能也表现都不错,这是因为基础查询通常只涉及到少量的数据表和字段,因此能够充分利用 Presto 和 Doris 的分布式查询特性和内存计算能力,Clickhouse 对多表关联支持不好,出现一些跑不通的现象,其中 SQL5、8、11、13、14、17、18 均超时,我们按 Timeout=500 秒计算,但希望显示更清晰截取 Timeout=350 秒。下图 2 是基础查询场景下四个引擎的平均查询时间:

图 2 TPC-DS 基础查询的性能对比

连接查询场景

连接查询是常见的多表查询场景,它通常使用 JOIN 语句连接多个表,并根据指定条件进行数据检索。如图 3 我们看到 ByConity 的性能最佳,主要得益于对查询优化器的优化,引入了基于代价的优化能力(CBO),在多表 Join 时候进行 re-order 的等优化操作。其次是 Presto 和 Doris,Clickhouse 在多表 Join 的效果相比其他三个性能不是很好,且对很多复杂语句的支持不够好。

图 3 TPC-DS 连接查询的性能对比

聚合查询场景

聚合查询是对数据进行统计计算的场景,例如测试 SUM、AVG、COUNT 等聚合函数的使用。ByConity 依然表现优异,其次是 Doris 和 Presto,Clickhouse 出现了四次 Timeout,为了方便看出差异,我们截取 Timeout 值到 250 秒。

图 4 TPC-DS 聚合查询的性能对比

子查询场景

子查询是在 SQL 语句中嵌套使用的查询场景,它通常作为主查询的条件或限制条件。如下图 5 所示,ByConity 表现最佳,原因是 ByConity 实现了基于规则的优化能力(RBO)进行查询优化,通过算子下推、列裁剪和分区裁剪等技术,把复杂的嵌套查询进行整体优化,替除所有的子查询,把常见算子转化成 Join+Agg 的形式。其次是 Doris 和 Presto 表现相对较好,但 Presto 在 SQL68 和 SQL73 出现 Timeout,Doris 也在 3 个 SQL 查询出现 Timeout,Clickhouse 同样出现了部分超时和系统报错,原因上面有提到。同样为方便看出差异,我们截取 Timeout 值等于 250 秒。

图 5 TPC-DS 子查询的性能对比

窗口函数查询场景

窗口函数查询是一种高级的 SQL 查询场景,它可以在查询结果中进行排名、分组、排序等操作。如下图 6 所示,ByConity 的性能最优,其次是 Presto,Doris 出现了一次 Timeout 的情况,Clickhouse 依然有部分没有跑通 TPC-DS 测试。

图 6 TPC-DS 窗口函数查询的性能对比

总  结

本文对 ClickHouse、Doris、Presto 和 ByConity 四个 OLAP 引擎在 TPC-DS 基准测试的 99 个查询语句下的性能进行了分析和比较。我们发现,在不同的查询场景下,四个引擎的性能表现存在差异。ByConity 在所有 TPC-DS 的 99 个查询场景下都表现优异,超过其他三个 OLAP 引擎;Presto 和 Doris 在连接查询、聚合查询和窗口函数查询场景下表现较好;由于 Clickhouse 的设计和实现并不是专门针对关联查询进行优化,因此在多表关联查询方面整体表现差强人意。

需要注意的是,性能测试结果取决于多个因素,包括数据结构、查询类型、数据模型等。在实际应用中,需要综合考虑各种因素,以选择最适合自己的 OLAP 引擎。在选择 OLAP 引擎时,还需要考虑其他因素,如可扩展性、易用性、稳定性等。在实际应用中,需要根据具体业务需求进行选择,并对引擎进行合理的配置和优化,以获得最佳的性能表现。

总之,ClickHouse、Doris、Presto、ByConity 都是非常优秀的 OLAP 引擎,具有不同的优点和适用场景。在实际应用中,需要根据具体业务需求进行选择,并进行合理的配置和优化,以获得最佳的性能表现。同时,需要注意选择具有代表性的查询场景和数据集,并针对不同的查询场景进行测试和分析,以便更全面地评估引擎的性能。

今日好文推荐

向量数据库?不要投资!不要投资!不要投资!

年薪60万的数据分析师工作保不住了?!阿里达摩院研究发现,改用GPT-4成本只需几千元

先别急着“用Rust重写”,可能没有说的那么安全

连代码都没写就敢要融资:被ChatGPT带火的向量数据库,带来了一大波造富神话

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
Chinese Man Uses ChatGPT To Create Fake News, ArrestedBacklash Forces Two Firms to Reverse Sichuan University Boycott追赶GPT-4的多模态大模型对比分析Deerfield/Choate/Hotchkiss/Lawrenceville学术和“爬藤”对比分析,你最关心的都在这里!Chinese University Streamlines Student Marriages, Sparks DebateOn Douyin, Chinese Companies Sell Coal at Rock-Bottom PricesMysterious Deaths of 2 Chinese Tourists in Bali Raise Alarm恐怖的白蚁!想给房客涨房租了……ClickHouse和PostgreSQL:“数据天堂”中的好搭档精选DS岗位 | Adobe、Nintendo、Samsung Research America等公司持续热招!【2023.7 更新:120k 开卡奖励】Chase Southwest Premier Business 商业信用卡FCN、ReSeg、U-Net、ParseNet、DeepMask…你都掌握了吗?一文总结图像分割必备经典模型(一)精选SDE岗位 |Apple、L3Harris Technologies、DoorDash l等公司持续热招!字节跳动开源ByConity:基于ClickHouse的存算分离架构云原生数仓2023中国临床肿瘤学会(CSCO)指南大会顺利开展Chase Southwest 联名卡 Pay Yourself Back (PYB) 功能简介:抵消年费&吃饭类别2023年“顶级医疗科技首席执行官(CEO)”排名公布,波士顿科学CEO Michael Mahoney位列第一Meta专辑 | SDE、DS、MLE均可投递!Amid Recovery Push, Street Vendors Make a Comeback Across China面向未来的开源OLAP技术架构探讨以及选型实践别乱分层,PO、VO、DAO、BO、DTO、POJO 到底应该用在哪里,你知道吗?Stabbing Death on Train Raises Questions About Railway SecurityGPU平台生态,英伟达CUDA和AMD ROCm对比分析道人笔记(四)敬长辈谨遵孝悌义,怜家贫常受百家恩Java 近期新闻:字符串模板、Quarkus、Open Liberty、PrimeFaces、JobRunr、DevnexusJCTC封面文章 | 深势科技Uni-Dock:支持极大规模数据库虚拟筛选的高性能对接引擎Young Chinese Obsess Over MBTI, the American Personality Test#英语学习#Reserve, Preserve和Conserve有什么区别?看看你能答对这道题吗?道人笔记(七)情切切郎舅送温暖 念长长少年叹世艰Henan City Rolls Out Monthly Business Enforcement AmnestyLogitech G502 X Plus Gaming Wireless Mouse - BlackJUC多线程:CountDownLatch、CyclicBarrier、Semaphore 同步器原理道人笔记(六)中学生涯孤身思双亲,偶遇奇事有幸种道因四种不良贷款出表方式对比分析道人笔记(五)读书时光去匆匆,小事之中悟因果
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。