Redian新闻
>
「单张图像重建3D网格」告别卡顿,从30分钟提速到45秒!浙大、加州大学等联合发布One-2-3-45:在线Demo可试玩

「单张图像重建3D网格」告别卡顿,从30分钟提速到45秒!浙大、加州大学等联合发布One-2-3-45:在线Demo可试玩

公众号新闻



  新智元报道  

编辑:LRS
【新智元导读】扩散模型不再慢,无缝支持基于文本生成3D网格任务!


基于单幅图像进行三维重建是一项具有重要应用价值的任务,但实现起来也非常困难,需要模型对对自然世界具有广泛的先验知识。


之前有工作通过在2D扩散模型的引导下优化神经辐射场来解决这个问题,但仍存在优化时间过长、3D结果不一致以及几何形状不佳等问题。


最近,来自加州大学圣迭戈分校、加州大学洛杉矶分校、康奈尔大学、浙江大学、印度理工学院马德拉斯分校以及Adobe的研究人员联合提出一个新模型One-2-3-45,以任意物体的单张图像作为输入,只需45秒即可在一次前馈过程中生成一个完整的360度的3D纹理网格。


论文链接:https://arxiv.org/pdf/2306.16928.pdf

项目主页:https://one-2-3-45.github.io/

在线Demo:https://huggingface.co/spaces/One-2-3-45/One-2-3-45



One-2-3-45主要包括三个组件:


1. 多视角合成:使用视图条件的二维扩散模型Zero123,以两阶段的方式生成多视图图像,输入包括单幅图像和相对相机变换,参数为相对球面坐标;


2. 姿态估计:根据Zero123生成的4个邻近视图估计输入图像的仰角,再将指定的相对位置与输入视图的估计位置相结合,获得多视图图像的位置;


3. 三维重建:将多视图姿态图像输入基于SDF的通用神经曲面重建模块,进行360°网格重建


由于无需使用开销较大的优化操作,该方法在重建3D形状时相比其他方法耗时显著缩短。


此外,该方法还可以生成更好的几何形状,产生3D一致性更好的结果,并更忠实于输入图像。


在实验部分,研究人员对该方法在合成数据和全新图像上都进行了实验,证明了该方法在网格质量和运行时间上的优势。


该方法也可以通过集成与现成的文本到图像的扩散模型,无缝地支持文本到3D的任务。


One-2-3-45


Zero123:以视图为条件的2D扩散模型


通过在互联网规模的数据上进行训练,二维扩散模型可以学习到通用的视觉概念,并且控制条件也从文本扩展到其他模态,例如可视边缘、用户涂鸦、深度和法线图等。


Zero123模型采用类似的思路,将条件设为视点(viewpoint)来控制图像生成,具体来说,给定一个物体的RGB图像和一个相对的相机变换,Zero123可以控制扩散模型在变换后的相机视角下合成一个新的图像。


Zero123根据大规模三维数据集来合成一对图像及其相对相机变换对稳定扩散进行了微调。


在创建微调数据集的过程中,Zero123假设物体以坐标系的原点为中心,并使用球形摄像机,即摄像机放置在球面上并始终看着原点,相机位置参数包括极角、方位角和半径,两个点的差值即为相对摄像机变换参数。


目标是学习一个模型f,使得f在输入「初始视角,相机变换参数」时与输入「变换后视角」时感知相似。


实验结果发现,这种微调方式可以使Stable Diffusion模型用于学习控制摄像机视点的通用机制,对微调数据集之外的物体进行推断。


NeRF优化能否将多视图预测提升至三维?


给定一个物体的单张图像,可以利用Zero123生成多视图图像,但能否使用传统的基于NeRF或基于SDF的方法从这些预测中重建高质量的三维网格呢?


给定单幅图像后,研究人员首先使用Zero123从球面均匀采样相机姿态,生成32幅多视角图像,然后将预测结果输入基于NeRF的方法(TensoRF)和基于SDF的方法(NeuS),分别优化密度场和SDF场。



不过这两种方法都没有取得令人满意的结果,生成结果中包含大量的失真和浮点,主要是由于Zero123预测不一致导致的。



2阶段源视图选择和真实预测混合训练


SparseNeuS论文中只演示了正面视图重构,但研究人员通过在训练过程中以特定方式选择源视图并添加深度监督,将其扩展到在一次前馈传递中重构360度网格。


冻结Zero123模型的参数后,在三维物体数据集上训练


按照Zero123对训练形状进行归一化处理,并使用球形相机模型;对于每个形状,首先渲染来自球面上均匀分布的n个摄像机姿态的n幅真实RGB和深度图像;对于每个视图,使用Zero123预测附近的四个视图。


在训练过程中,将所有4×n的预测结果和真实姿态输入到重建模块中,并随机选择n个真实RGB图像中的一个视图作为目标视图,然后使用真实RGB值和深度值进行有监督训练,从而可以让模型学会处理来自Zero123的不一致预测,并重建一致的360°网格。


相机位置估计


研究人员提出了一个仰角估计模块来推断输入图像的仰角。


首先使用Zero123预测输入图像的四个邻近视图,然后以从粗到细的方式列举所有可能的仰角。


对于每个仰角候选角,计算四幅图像对应的相机姿态,并计算这组相机姿态的重投影误差,以衡量图像与相机姿态之间的一致性。


重投影误差最小的仰角被用于通过组合输入视图的姿态和相对姿态来生成所有4×n源视图的相机姿态。


实验结果



从定性实验结果来看,在对比现有zero-shot图像三维重建方法时,包括Point-E、Shap-E等在数百万三维数据上训练得到的模型,以及基于Stable Diffusion先验的优化方法,可以看到One-2-3-45模型在处理合成图像和真实图像时都非常有效。



研究人员还在Objaverse和GoogleScannedObjects(GSO)数据集上对这些方法进行了定量比较。


对于每个数据集,随机选择20个形状,并为每个形状渲染一张图像进行评估。


为了使预测结果与真实网格对齐,线性搜索缩放因子和旋转角度,对采样点云应用迭代最邻近点(ICP),并选择离群值最多的点云。


遵循RealFusion测量了F-score(阈值为0.05)和CLIP相似度,以及在A100 GPU上的运行时间。



从实验结果中可以看到,该方法在F-Score方面优于所有基线方法;在CLIP相似度方面,除了Shap-E之外,超越了所有方法。


还可以发现,CLIP相似度对颜色分布非常敏感,而对局部几何变化(如凳子的腿数、杯子的把手数)的区分度较低。


在运行时间方面,与基于优化的方法相比,该方法具有明显优势,其性能与Point-E和Shap-E等三维原生扩散模型相当,即三维重建模块只需要大约5秒钟就可以重建一个三维网格,剩余时间主要用于Zero123预测,在A100 GPU上每幅图像大约需要1秒钟。


参考资料:
https://arxiv.org/pdf/2306.16928.pdf




微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
如何用AI大模型「读脑」并重建所见图像?中国科学院学者在线分享香港「温拿乐队」告别演唱会 象征粤语歌时代结 束?窥探他人眼中的世界:用眼睛反光重建3D场景,《黑镜》走进现实单张图片引导,保留主体,风格百变,VCT帮你轻松实现NLP还能做什么?北航、ETH、港科大、中科院等多机构联合发布百页论文,系统阐述后ChatGPT技术链日本一餐厅出现集体食物中毒、加蓬总统被扣押、多地学校延迟开学等丨今日天下ICCV 2023 | 图像重缩放新方法:无需对模型重新训练即可提高性能小说连载 《四维空间的魔鬼与人类起源》-- 02Steam拆付费墙!尝试“90分钟免费试玩”模式:对玩家、厂商有何影响?北大、武大、东大、中科大……南京这所名校高三毕业班“蹭饭地图”流出CVPR'23|一张图重建3D人物新思路:完美复刻复杂动作和宽松衣物,遮挡也不在话下​9.1入住|近绿线D Fenway地铁步行4分钟/近BU EAST步行9分钟高级公寓1b1b 4100+,2b2b 5300+Offspring of Spirit​9.1入住|翻新|近绿线D Fenway地铁站步行2分钟/近BU Central步行6分钟优质两室一厅4300,包供暖和热水CVPR 2023|Crowd3D:支持数百人3D/姿态/形状/位置重建的新基准​半中介费|9.1入住|近绿线D Fenway地铁站步行2分钟/近BU Central步行6分钟优质两室一厅4000包供暖和热水突破自监督学习效率极限!马毅、LeCun联合发布EMP-SSL:无需花哨trick,30个epoch即可实现SOTA字节跳动 Al Lab、北京大学、华盛顿大学、加州大学学洛杉矶分校知名学者重磅来袭!高考英语听力播放卡顿,学生崩溃大哭?江西回应热搜爆了!浙江广电回应《中国好声音》争议;水利部和中国气象局联合发布橙色山洪灾害气象预警 ;多地市监部门加入医药反腐风暴丨早报首个基于交互式网页搜索的中文问答开源框架,清华、人大、腾讯联合发布WebCPM回。首视频版大爆炸来了!剪辑可精准到每个字,支持中文Demo可玩,老罗:打钱3D AI生成出新玩法了:无需数小时,只要45秒,单张图片即可生成 3D模型CVPR 2023|Crowd3D:数百人大场景3D位置、姿态、形状重建,开源benchmark数据集小说连载 《四维空间的魔鬼与人类起源》 01小说连载 《四维空间的魔鬼与人类起源》-- 03癌症逐渐年轻化!浙大、哈佛研究发现,30年来年轻人癌症激增79%人类学家也说,不要把性别卡得这么死高考英语听力出现播放卡顿,江西一地通报懂3D的语言模型来了!UCLA、上交、MIT等联合提出3D-LLM:性能大涨9%大模型论文阅读神器来了!5秒翻译67页论文,直接截图提问,网页可试玩GPT-3.5 Turbo推出微调功能;昆仑万维天工AI搜索引擎内测;阿里云等联合发布教育大模型Blood|发现新靶点!浙大学者在复发难治白血病研究领域取得重要理论突破半中介费|9.1入住|翻新|近绿线D Fenway步行2分钟/近BU Central步行6分钟优质两室一厅4300,包水暖
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。