Redian新闻
>
1800亿参数,世界顶级开源大模型Falcon官宣!碾压LLaMA 2,性能直逼GPT-4

1800亿参数,世界顶级开源大模型Falcon官宣!碾压LLaMA 2,性能直逼GPT-4

公众号新闻



  新智元报道  

编辑:桃子
【新智元导读】一经发布,地表最强开源模型Falcon 180B直接霸榜HF。3.5万亿token训练,性能直接碾压Llama 2。

一夜之间,世界最强开源大模型Falcon 180B引爆全网!
1800亿参数,Falcon在3.5万亿token完成训练,直接登顶Hugging Face排行榜。
基准测试中,Falcon 180B在推理、编码、熟练度和知识测试各种任务中,一举击败Llama 2。
甚至,Falcon 180B能够与谷歌PaLM 2不差上下,性能直逼GPT-4。
不过,英伟达高级科学家Jim Fan对此表示质疑,
- Falcon-180B的训练数据中,代码只占5%。
而代码是迄今为止对提高推理能力、掌握工具使用和增强AI智能体最有用的数据。事实上,GPT-3.5是在Codex的基础上进行微调的。
- 没有编码基准数据。
没有代码能力,就不能声称「优于GPT-3.5」或「接近GPT-4」。它本应是预训练配方中不可或缺的一部分,而不是事后的微调。
- 对于参数大于30B的语言模型,是时候采用混合专家系统(MoE)了。到目前为止,我们只看到OSS MoE LLM < 10B。
一起来看看,Falcon 180B究竟是什么来头?

世界最强开源大模型


此前,Falcon已经推出了三种模型大小,分别是1.3B、7.5B、40B。
官方介绍,Falcon 180B是40B的升级版本,由阿布扎比的全球领先技术研究中心TII推出,可免费商用。
这次,研究人员在基底模型上技术上进行了创新,比如利用Multi-Query Attention等来提高模型的可扩展性。
对于训练过程,Falcon 180B基于亚马逊云机器学习平台Amazon SageMaker,在多达4096个GPU上完成了对3.5万亿token的训练。
总GPU计算时,大约7,000,000个。
Falcon 180B的参数规模是Llama 2(70B)的2.5倍,而训练所需的计算量是Llama 2的4倍。
具体训练数据中,Falcon 180B主要是RefinedWe数据集(大约占85%) 。
此外,它还在对话、技术论文,以及一小部分代码等经过整理的混合数据的基础上进行了训练。
这个预训练数据集足够大,即使是3.5万亿个token也只占不到一个epoch。
官方自称,Falcon 180B是当前「最好」的开源大模型,具体表现如下:
在MMLU基准上,Falcon 180B的性能超过了Llama 2 70B和GPT-3.5。
在HellaSwag、LAMBADA、WebQuestions、Winogrande、PIQA、ARC、BoolQ、CB、COPA、RTE、WiC、WSC 及ReCoRD上,与谷歌的PaLM 2-Large不相上下。
另外,它在Hugging Face开源大模型榜单上,是当前评分最高(68.74分)的开放式大模型,超越了LlaMA 2(67.35)。

Falcon 180B上手可用


与此同时,研究人员还发布了聊天对话模型Falcon-180B-Chat。该模型在对话和指令数据集上进行了微调,数据集涵盖了Open-Platypus、UltraChat和Airoboros。
现在,每个人都可以进行demo体验。

地址:https://huggingface.co/tiiuae/falcon-180B-chat

Prompt 格式


基础模型没有Prompt格式,因为它并不是一个对话型大模型,也不是通过指令进行的训练,所以它并不会以对话形式回应。
预训练模型是微调的绝佳平台,但或许你不该直接使用。其对话模型则设有一个简单的对话模式。
System: Add an optional system prompt hereUser: This is the user inputFalcon: This is what the model generatesUser: This might be a second turn inputFalcon: and so on


Transformers


从Transfomers 4.33开始,Falcon 180B可以在Hugging Face生态中使用和下载。
确保已经登录Hugging Face账号,并安装了最新版本的transformers:
pip install --upgrade transformershuggingface-cli login


bfloat16
以下是如何在 bfloat16 中使用基础模型的方法。Falcon 180B是一个大模型,所以请注意它的硬件要求。
对此,硬件要求如下:
可以看出,若想对Falcon 180B进行全面微调,至少需要8X8X A100 80G,如果仅是推理的话,也得需要8XA100 80G的GPU。
from transformers import AutoTokenizer, AutoModelForCausalLMimport transformersimport torch
model_id = "tiiuae/falcon-180B"
tokenizer = AutoTokenizer.from_pretrained(model_id)model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto",)
prompt = "My name is Pedro, I live in"inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
output = model.generate( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], do_sample=True, temperature=0.6, top_p=0.9, max_new_tokens=50,)output = output[0].to("cpu")print(tokenizer.decode(output)

可能会产生如下输出结果:
My name is Pedro, I live in Portugal and I am 25 years old. I am a graphic designer, but I am also passionate about photography and video.I love to travel and I am always looking for new adventures. I love to meet new people and explore new places.

使用8位和4位的bitsandbytes
此外,Falcon 180B的8位和4位量化版本在评估方面与bfloat16几乎没有差别!
这对推理来说是个好消息,因为用户可以放心地使用量化版本来降低硬件要求。
注意,在8位版本进行推理要比4位版本快得多。要使用量化,你需要安装「bitsandbytes」库,并在加载模型时启用相应的标志:
model = AutoModelForCausalLM.from_pretrained(    model_id,    torch_dtype=torch.bfloat16,    **load_in_8bit=True,**    device_map="auto",)

对话模型
如上所述,为跟踪对话而微调的模型版本,使用了非常直接的训练模板。我们必须遵循同样的模式才能运行聊天式推理。
作为参考,你可以看看聊天演示中的 [format_prompt] 函数:
def format_prompt(message, history, system_prompt):    prompt = ""    if system_prompt:        prompt += f"System: {system_prompt}\n"    for user_prompt, bot_response in history:        prompt += f"User: {user_prompt}\n"        prompt += f"Falcon: {bot_response}\n"        prompt += f"User: {message}\nFalcon:"    return prompt


从上可见,用户的交互和模型的回应前面都有 User: 和 Falcon: 分隔符。我们将它们连接在一起,形成一个包含整个对话历史的提示。这样,就可以提供一个系统提示来调整生成风格。

网友热评


对于Falcon 180B的真正实力,许多网友对此展开热议。
绝对难以置信。它击败了GPT-3.5,与谷歌的PaLM-2 Large不相上下。这简直改变游戏规则!
一位创业公司的CEO表示,我测试了Falcon-180B对话机器人,它并不比Llama2-70B聊天系统好。HF OpenLLM排行榜也显示了好坏参半的结果。考虑到它的规模更大,训练集也更多,这种情况令人惊讶。
举个栗子:
给出一些条目,让Falcon-180B和Llama2-70B分别回答,看看效果如何?
Falcon-180B误将马鞍算作动物。而Llama2-70B回答简洁,还给出了正确答案。
参考资料:

https://twitter.com/TIIuae/status/1699380904404103245

https://twitter.com/DrJimFan/status/1699459647592403236

https://huggingface.co/blog/zh/falcon-180b

https://huggingface.co/tiiuae/falcon-180B




微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
GPT-4版微软Win11下周二见;千亿参数生物医药大模型面世;DALL·E 3模型将接入Bing丨AIGC大事日报清华系ChatGLM3现场怼脸演示!多模态直逼GPT-4V,国产Code Interpreter来了Stability AI火速发布Llama 2微调模型FreeWilly,性能媲美ChatGPT!网友惊呼游戏规则已改变巴铁公开新一代隐身版枭龙战机:总共3种方案,性能直逼五代机登高作业的联想(图)昆仑万维开源130亿参数大模型!0门槛商用、多榜超Llama 2,预训练数据也开源十亿参数,一键瘦身!「模型减重」神器让大模型狂掉3/4 | 最“in”大模型用SAM做零样本视频对象分割!港科大等开源首个「稀疏点传播」方法SAM-PT,性能直追有监督SOTA击败Llama 2,抗衡GPT-3.5,Stability AI新模型登顶开源大模型排行榜第五章 列宁主义救中国 (3)650亿参数大模型预训练方案开源可商用!LLaMA训练加速38%,来自明星开源项目推理1760亿参数的BLOOMZ,性能时延仅3.7秒 | 最“in”大模型1800亿参数,性能碾压Llama 2,世界最强开源大模型Falcon 180B发布1300亿参数,国内首个数学大模型MathGPT上线!多项基准赶超GPT-4开源大模型FLM-101B:训练成本最低的超100B参数大模型人手一个编程助手!北大最强代码大模型CodeShell-7B开源,性能霸榜,IDE插件全开源首次击败GPT-4?700亿参数Xwin-LM登顶斯坦福AlpacaEval,13B模型吊打ChatGPT国产大模型开源一哥再登场,最强双语LLM「全家桶」级开源!340亿参数超越Llama2-70B国产130亿参数大模型免费商用!性能超Llama2-13B,支持8k上下文,哈工大已用上正面硬刚GPT-4V!浙大校友开源多模态大模型LLaVA-1.5,130亿参数8个A100一天训完碾压Llama2!微软13亿参数phi-1.5,单个A100训练,刷新SOTA性能超越Llama2-13B,可免费商用,姚星创业公司开源百亿参数通用大模型nǚ hóng?nǚ gōng【老键曲库】Lanie Gardner - Dreams by Fleetwood Mac性能碾压Llama 2,全球下载量超500万,百川智能开源模型凭什么?中文最强开源大模型来了!130亿参数,0门槛商用,来自昆仑万维参数量仅为1/700,性能超越GPT-3.5!CMU+清华开源Prompt2Model框架20B跨级挑战70B性能!国产开源大模型打造大模型新标杆百川开源最强中英文百亿参数模型!超越LLaMA,中国开源大模型开启商用新纪元650亿参数,训练飙升38%!LLaMA基础大模型复刻最佳实践开源,GitHub已获30k星​参数少近一半,性能逼近谷歌Minerva,又一个数学大模型开源了思绪在小雨中流连传滴滴造车VP创业大模型;澜舟科技推出400亿参数通用大模型;商汤AIGC相关收入增长670.4%GPT-4关键信息遭泄露;北京将发4000万元算力券;百川智能推130亿参数大模型丨AIGC大事日报怀特兄弟飞机在大兴机场试飞
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。