Redian新闻
>
苹果“套娃”式扩散模型,训练步数减少七成!

苹果“套娃”式扩散模型,训练步数减少七成!

公众号新闻
克雷西 发自 凹非寺
量子位 | 公众号 QbitAI

苹果的一项最新研究,大幅提高了扩散模型在高分辨率图像上性能。

利用这种方法,同样分辨率的图像,训练步数减少了超过七成。

在1024×1024的分辨率下,图片画质直接拉满,细节都清晰可见。

苹果把这项成果命名为MDM,DM就是扩散模型(Diffusion Model)的缩写,而第一个M则代表了套娃(Matryoshka)。

就像真的套娃一样,MDM在高分辨率过程中嵌套了低分辨率过程,而且是多层嵌套。

高低分辨率扩散过程同时进行,极大降低了传统扩散模型在高分辨率过程中的资源消耗。

对于256×256分辨率的图像,在批大小(batch size)为1024的环境下,传统扩散模型需要训练150万步,而MDM仅需39万,减少了超七成。

另外,MDM采用了端到端训练,不依赖特定数据集和预训练模型,在提速的同时依然保证了生成质量,而且使用灵活。

不仅可以画出高分辨率的图像,还能合成16×256²的视频。

有网友评论到,苹果终于把文本连接到图像中了。

那么,MDM的“套娃”技术,具体是怎么做的呢?

整体与渐进相结合

在开始训练之前,需要将数据进行预处理,高分辨率的图像会用一定算法重新采样,得到不同分辨率的版本。

然后就是利用这些不同分辨率的数据进行联合UNet建模,小UNet处理低分辨率,并嵌套进处理高分辨率的大UNet。

通过跨分辨率的连接,不同大小的UNet之间可以共用特征和参数。

MDM的训练则是一个循序渐进的过程。

虽然建模是联合进行的,但训练过程并不会一开始就针对高分辨率进行,而是从低分辨率开始逐步扩大。

这样做可以避免庞大的运算量,还可以让低分辨率UNet的预训练可以加速高分辨率训练过程。

训练过程中会逐步将更高分辨率的训练数据加入总体过程中,让模型适应渐进增长的分辨率,平滑过渡到最终的高分辨率过程。

不过从整体上看,在高分辨率过程逐步加入之后,MDM的训练依旧是端到端的联合过程。

在不同分辨率的联合训练当中,多个分辨率上的损失函数一起参与参数更新,避免了多阶段训练带来的误差累积。

每个分辨率都有对应的数据项的重建损失,不同分辨率的损失被加权合并,其中为保证生成质量,低分辨率损失权重较大。

在推理阶段,MDM采用的同样是并行与渐进相结合的策略。

此外,MDM利还采用了预训练的图像分类模型(CFG)来引导生成样本向更合理的方向优化,并为低分辨率的样本添加噪声,使其更贴近高分辨率样本的分布。

那么,MDM的效果究竟如何呢?

更少参数匹敌SOTA

图像方面,在ImageNet和CC12M数据集上,MDM的FID(数值越低效果越好)和CLIP表现都显著优于普通扩散模型。

其中FID用于评价图像本身的质量,CLIP则说明了图像和文本指令之间的匹配程度。

和DALL E、IMAGEN等SOTA模型相比,MDM的表现也很接近,但MDM的训练参数远少于这些模型。

不仅是优于普通扩散模型,MDM的表现也超过了其他级联扩散模型。

消融实验结果表明,低分辨率训练的步数越多,MDM效果增强就越明显;另一方面,嵌套层级越多,取得相同的CLIP得分需要的训练步数就越少。

而关于CFG参数的选择,则是一个多次测试后再FID和CLIP之间权衡的结果(CLIP得分高相对于CFG强度增大)。

论文地址:
https://arxiv.org/abs/2310.15111

「量子位2023人工智能年度评选」开始啦!

今年,量子位2023人工智能年度评选从企业、人物、产品/解决方案三大维度设立了5类奖项!欢迎扫码报名 

MEET 2024大会已启动!点此了解详情


点这里👇关注我,记得标星哦~

一键三连「分享」、「点赞」和「在看」

科技前沿进展日日相见 ~ 

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
电视“套娃”收费治理,有新进展!苹果文生图大模型亮相:俄罗斯套娃式扩散,支持1024x1024分辨率电视会员“套娃”收费?多部门联合整治!百川智能发布Baichuan2大模型:全面领先Llama2,训练切片也开源了AIGC时代的视频扩散模型,复旦等团队发布领域首篇综述AI视觉字谜爆火!梦露转180°秒变爱因斯坦,英伟达高级AI科学家:近期最酷的扩散模型|亮马桥小纪严选手机上0.2秒出图、当前速度之最,谷歌打造超快扩散模型MobileDiffusionGPT-4+物理引擎加持扩散模型,生成视频逼真、连贯、合理华为提出Sorted LLaMA:SoFT代替SFT,训练多合一大语言模型广电整治电视“套娃”收费、日本出售下水道井盖、美国费城大规模骚乱等丨今日天下《思念成风》&《黑月光》NeurIPS上新 | 从扩散模型、脑电表征,到AI for Science,微软亚洲研究院精选论文华兴上半年营收5.6亿:期内亏损1.3亿 员工总数减少15%大语言模型击败扩散模型!视频图像生成双SOTA,谷歌CMU最新研究,一作北大校友NeurIPS 2023 Spotlight | 半监督与扩散模型结合,实现少标签下可控生成UIUC公布新生数据!中国留学生人数稳居第一!留美人数减少是“伪命题”?中文LLaMA-2刷榜,开源可商用!千元预算,训练半天,效果媲美主流大模型狙击扩散模型!谷歌&伯克利提出IGN:单步生成逼真图像!开通会员遭遇“套娃”收费,看个电视咋这么难?国粹太极拳在大国政治上的娴熟应用!生成的分子几乎 100% 有效,用于逆向分子设计的引导扩散模型NeurIPS 2023 | SlotDiffusion: 基于Slot-Attention和扩散模型的全新生成模型芙蓉蛋PARTY:中国怎么会舍得让你们离开NeurIPS 2023 | 扩散模型解决多任务强化学习问题画你所想!北航港大提出DiffSketcher:基于扩散模型的文本驱动矢量化手绘草图合成MetaMath:新数学推理语言模型,训练大模型的逆向思维文生图prompt不再又臭又长!LLM增强扩散模型,简单句就能生成高质量图像|ACM MM'23仙人球开大花,可与昙花媲美NeurIPS 2023 | 扩散模型再发力!微软提出TextDiffuser:图像生成的文字部分也能搞定!终结扩散模型,IGN单步生成逼真图像!UC伯克利谷歌革新LLM,美剧成灵感来源在图像、视频生成上,语言模型首次击败扩散模型,tokenizer是关键ACM MM 2023 | CLE Diffusion:可控光照增强扩散模型ICLR 2024论文审稿结果出炉!7000+高产论文创新纪录,扩散模型占比最高语言模型战胜扩散模型!谷歌提出MAGVIT-v2:视频和图像生成上实现双SOTA!红色日记 11.11-21
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。