Redian新闻
>
AI 大模型,让手机真正开始「智能」

AI 大模型,让手机真正开始「智能」

科技



从「教育」用户到「理解」用户,手机 OS 正加速变革。

作者 | Jesse
编辑 | 靖宇

经过十几年的发展,大部分智能手机系统都已走向完善,功能愈发趋同。

但这只是表象。实际上,各家厂商都在积蓄力量,酝酿革新。今年,随着大模型的迅速应用落地,进化的号角也终于开始吹响。

这场革命必定与大模型息息相关,但又不只关乎大模型。目前大模型领域的主流,都是围绕服务端部署展开。想让智能手机与大模型结合,到底意味着什么?有什么局限和优势?

想理解这个问题,需要回到更早的时候。

去年,OPPO 在 ODC2022 上发布了自研智慧跨端系统「潘塔纳尔」。起初它给人的感觉还略显抽象,但过去一年,潘塔纳尔已经实现了初步落地。通过智慧跨端和泛在服务两大体验,对下实现跨设备的协同,对上支撑了不同应用间服务的智能流转。

刚刚结束的 ODC2023 上,OPPO 正式推出 AndesGPT,将AIGC 能力与潘塔纳尔结合,融入了 ColorOS 14。表面上,OPPO 早已布局的大模型和智慧跨端系统是两套不同的技术底座,但在今天,它们却产生了重要的化学反应。

这幅手机应用、交互革命的未来蓝图,正在一点点变得完整。


01

系统「解耦」,

让服务与数据融合


去年夏天,OPPO 首次推出了自研智慧跨端系统「潘塔纳尔」。

当时大部分人的注意力都放在「跨端」这个概念上,认为 OPPO 准备做的事,主要是不同硬件之间的数据流转、功能接力。比如「手机上复制,电脑上粘贴」、「手机上接到电话,在平板上接听」等功能……

但实际上,过去一年,OPPO 通过潘塔纳尔做到的最重要的一件事,是像一座桥梁,通过泛在服务和智慧跨端,把系统、应用到服务做了深层次的打通。

从智能手机诞生之日起,用来组织功能的单位就是 App。早期的智能手机系统,以 iOS 为代表,只有两个核心层级:一层是桌面,排列着一个个 App 的图标;一层是 App,就是点开 App 后所有的功能。

当年苹果最早喊出了「每个需求都有一个 App 来解决」(There's an app for everything)的口号。

随着移动互联网生态的发展,App 的生态也终于走向饱和,很多 App 都开始变得臃肿,出现了大量的功能重叠。

对用户来说,臃肿的 App、重复的功能越来越成为一种负担。为了一个小功能,就要在 App 间反复跳转,也变得非常麻烦。典型场景包括一边回复消息,一边关注外卖的配送进度;在检查邮件、浏览网页的时候,同时看地图导航……

App 是智能手机最关键的功能组织形态,但不应该是唯一的形态,更不应该是一个完全封装的系统。想要优化 App 的体验,就必须进行「系统解耦」。

这个问题一直存在,所以 Android 很早就推出了「小组件」,尝试在用户界面层面解决。但早期的小组件,完全出于 App 开发者自愿开发,并没有得到充分推动。

而 OPPO 在推出「潘塔纳尔」后,以一个更开放的姿态参与进来,将整个系统解耦,变成了一个个原子化服务,以人为中心,凭借情境感知与计算能力为人提供合适的服务,智能显示在手机桌面上,手表上,甚至通过耳机播报。

过去一年,潘塔纳尔已经针对出行、外卖、导航、快递等应用场景,推动了「泛在服务」落地。首批支持的 App 包括支付宝、美团,这次 ColorOS 14 又支持了小红书、携程、去哪儿。

利用泛在服务,用户可以更灵活、便捷地调取服务,减少不必要的操作步骤。

这件事并不只有 OPPO 一家在做,苹果 iOS 的「即时动态」、「小组件」,也是在做类似的事情。从系统中解耦出 App 的一项项「服务」,增加配置的灵活性,更高效地利用手机信息的内容和优先级,降低用户的认知、操作负担,已经是行业趋势。

与此同时,只是做到让服务跳出「App」以外其实并不足够,存在于 App 内的文件数据也会由于不同系统生态导致体验割裂,例如 iPhone 可以打开在微信上收到的 keynote,但 Android 却没办法。这种安卓生态与苹果系统之间类似的割裂每天都在上演。

这样的情况也通过「智慧跨端」正在逐步得到解决。潘塔纳尔通过一个 OPPO 账号打破数据壁垒,实现数据采集,跨端调用,让服务和数据不局限于手机,而是可以实现多设备多系统之间的流转。这使得服务能够流转出现在用户的不同设备及系统上:手表、平板、电脑、耳机、电视、汽车……随时触手可及。

举个例子,上个月的 OPPO Find N3 手机发布会上,苹果系统办公软件格式的文件,可以快速在安卓手机上打开了,而且这个功能无需安装第三方应用。在 ColorOS 14 上通过 PhoneLink,用户可以直接在 Windows 系统上操作使用手机 App,访问手机上的相册,互传文件。

将手机功能的基本组织单位从系统内「App」解耦为「服务」,允许它在多设备间灵活流转,会带来非常深远的变化。

因为随着泛在服务场景的丰富,智慧跨端可流转设备的增加,另一个问题会迅速产生:如何实现准确智能地推荐,让用户可以便捷调用?

这就需要对手机的界面、交互,以及智能推荐的机器学习模型,进行革新升级。

大模型的切入点,出现了。


02

大模型,

不只要「大」


过去一年,大模型发展的核心关键词,就是「大」。

参量是大模型展现出惊人智慧的核心原因,所谓「大力出奇迹」。参数的规模越大、层级越多,大模型就能对数据进行更细腻的理解,最终拟合出更真实的结果。

如果把智慧比作声音,人类智慧是连贯的模拟信号,AI 则像是数字录音回放设备,采样率决定了音质。采样率越高,就与自然的声音越接近,到一定程度,人耳就不再能分辨出区别。同样的,参量够大,AI 就能「骗」过人类。

所以,目前宣布将大模型部署到手机上的厂商,都不同程度地遭到了舆论质疑。很多人认为手机上可以部署的模型,参量不够大。进行多端、多模型部署,反而会带来混乱。

如果大模型应用的目标仅仅是打造出一个「能通过图灵测试,上知天文,下知地理的人工智能」,那确实是,参量决定一切。

但实际上,一个模型是否实用,并不是靠参量来判断的。一切模型,最终都是为了模拟一部分现实,推演、拟合出合理、正确的结果,满足需要即可,并不能武断地说「越大越好」。

对这个问题,手机厂商有更深的认识,一个典型例子是语音助手。

语音助手的核心模型,就是要把用户发出的声音波形,拟合成自然语言。这个模型的复杂度和运算量,对于早期的智能手机来说已经很大了,大部分手机芯片跑不动。所以早期的语音助手,都会将用户语音指令的声音波形,发送到云端,由服务器上的模型识别成指令后,再发回手机执行。

但随着手机上 NPU(神经引擎)的算力发展,以及对声音识别模型的简化,手机厂商发现,也可以把这个模型部署到本地,直接让 NPU 来跑。它带来的好处也很实际:响应速度变快了,无网络环境也可以用,且增强了隐私安全性。

谷歌率先将 Google Assistant 的识别模型缩小到 500M 大小,部署在了手机本地

目前大模型应用主要以生成式 AI 为主,并未进入那些更接地气的复杂场景。当大模型应用真正触及到用户需求的细枝末节时,会有更多问题出现,其中最关键的两个就是「数据安全」和「响应速度」。

从这个角度,就不难理解 OPPO 为什么在推出 AndesGPT 的时候,如此笃定地采用了「端云协同」的技术架构。

从十亿参量到千亿参量,OPPO 计划部署一系列不同参数规模的大模型,兼顾响应速度、安全性,同时追求提升大模型的能力上限。

通过端云分工,AndesGPT 会根据对指令、任务需求的梯度理解,来智能调用不同模型。比如用户的指令只是查询手机内一个联系人,那就通过端侧模型迅速响应,如果用户问的是更复杂的知识,就通过云端大模型,生成更复杂,准确的回答。

AndesGPT 的能力覆盖非常广阔,从「智能摘要」、「智能消除」,到基于语义的多模态信息搜索,加深对用户个性化习惯的理解、记忆……

据 OPPO 内部透露,这些能力也将会支持端侧化,目前他们已经在端侧跑通 13B(130 亿)参量模型,突破了端侧大模型的能力上限。这些模型能力,加上智能手机十亿级的用户规模,将展开大模型应用的广阔未来。


03

智能手机的二次革命


从潘塔纳尔,到 AndesGPT,OPPO 展示了自己推动变革的决心。

ODC2023 上,OPPO 还宣布,计划将「对话式交互」引入到各个系统应用,简化用户的用机体验。

「对话式交互」,会很容易让人联想到 2017 年前后的 voice-first(语音优先)风潮。当时很多人都认为智能音箱、语音助手会成为下一代人机交互的关键。但风潮迅速席卷之后,又迅速衰退下去。

其中一大原因就在于,过去的智能语音助手,无论是部署在音箱还是手机上,对语义的理解能力都有限,能调用的数据和服务更有限。到最后,它能实现的功能与智能手机相比,依然只能算沧海一粟。

但这一次,变革围绕系统、应用到服务展开,依靠大模型深入。

从 ColorOS 的发展蓝图里就能看到,它一方面通过潘塔纳尔对系统解耦,带来泛在服务和智慧跨端,便于用户在 App 之外调用功能;同时又通过 AndesGPT,基于自然语义理解用户需要,推动「对话式交互」发展。

OPPO 软件工程事业部副总裁李杰在接受采访时表示,OPPO 希望通过 AndesGPT 为用户提供一个类似「超级助理」的产品。

这正是手机利用大模型的优势所在。

一方面,手机可以利用本地的数据去理解用户,其中很多是最贴近用户私人生活的数据,获得授权后,这些数据可以直接成为 prompt 的「语境」;另一方面,手机可以利用各种本地接口、模块,调用更多 App 的功能。

举一个简单的想象。当用户问聊天机器人「我晚上应该吃点什么?」时,如果不详细写在 prompt 里,那些部署在云端的聊天机器人就不会知道用户的籍贯民族,口味营养的偏好,更难以调用相关的服务。最后大概率只能给出一些较泛化的图文食物推荐。这个情况,无论把模型的参量提升到什么程度,都很难改进。

但如果利用部署在手机上的大模型,可能并不需要参量多大,就可以基于用户的位置、时间、历史订单记录,甚至是运动健康数据,来给出推荐。给出的推荐可以是食谱,可以是一个通向点评 App 的链接,以至于直接调用外卖软件的服务模块,生成一个订单,用户一键确认发送,也完全可能。

这是一个最基本的想象,类似的场景还有很多。可以说,越是贴近用户生活的,简单而具体的需求,手机在结合大模型之后,辅助用户的效果就会更好更便捷。

借助大模型,使用手机将不再是一个需要「学习」的过程,用户只需用自然语言表达自己的需求即可。OPPO 目前基于潘塔纳尔融合大模型后,在 ColorOS 14 上推出的「用机助手」就已经迈出了第一步,通过「对话」理解用户需求,帮助用户解决日常高频使用的复杂设置,将传统交互方式升级为更智能更便捷的对话方式。

它的应用逻辑是,潘塔纳尔先将各种复杂的用机设置,组合构建成面向用户需求的「原子化能力」,再通过 AndesGPT 理解用户需求之后,去匹配对应的能力并完成设置,仅手机的设置功能就覆盖了近 400 项。

所以这场变革,既是从「界面交互」到「对话交互」的转变,更是从「用户学习使用计算机」到「计算机主动理解用户需要」的转变。

这件事,OPPO 已经迈出了第一步。


*头图来源:OOPO

本文为极客公园原创文章,转载请联系极客君微信 geekparkGO






极客一问

你认为 AI 大模型能

变革智能手机的核心吗?








 

热点视频

今天,Sam Altman 宣布回归 OpenAI,并表示会继续与微软的深度合作。在今年5月的一个采访中,Sam 解释了选择微软投资的原因,他表示,两家的合作不是完美的,但“微软能理解我们为什么需要现在的控制条款。”


点赞关注极客公园视频号

观看更多精彩视频

 

更多阅读




微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
第四届金鸡手机电影计划入围片单公布 | 让手机捕捉诗意瞬间利润暴跌100%!这些巨头的苦日子,真正开始镇岳510问世,阿里云开始「卷」存力省钱妙招!如何让手中的信用卡获得最大现金或积分回馈?小说:兰欣与乌茶 33vivo发布蓝心大模型,手机端运行且开源,自研系统亮相高通甩出最强芯片三件套!手机跑100亿参数大模型,PC芯片逆袭苹果英特尔百川智能发布角色大模型,零代码复刻角色北京理工大学发布双语轻量级语言模型,明德大模型—MindLLM,看小模型如何比肩大模型IEEE Fellow 张磊:普及大模型,手机端的创新很关键旅美散记(21):韩国大学生球友Brandon​晚点财经|集成大模型,或者被大模型集成;10 月中国进口额恢复增长AI不跑分|国内外七款大模型,哪款是真正的训猫大师?MetaMath:新数学推理语言模型,训练大模型的逆向思维科研上新 | 第2期:可驱动3D肖像生成;阅读文本密集图像的大模型;文本控制音色;基于大模型的推荐智能体小模型如何比肩大模型,北理工发布明德大模型MindLLM,小模型潜力巨大中文在线宣布发布“逍遥”大模型,可一键生成万字小说;谷歌称将保护生成式人工智能用户免受版权索赔丨AIGC日报工作着是美丽的吗?免费大模型实战课|首周聚焦百度智能云千帆大模型平台使用,《大模型应用实践》实训营11月16日开讲!​谷歌Pixel 8 Pro手机真机曝光,10月4日发布又大又粗的麒麟臂很难练?一套课程让手臂增粗10cm!真格 x 百度智能云千帆大模型,AI 黑客松又来了|Z Events苹果正开发自研高性能电池 / OpenAI 推出自定义版 ChatGPT / 李开复 AI 公司首发大模型李开复零一万物发布首款大模型;马斯克xAI发布首个大模型;360、美团、昆仑万维等最新消息;vivo发布蓝心AI大模型朱啸虎:不要追逐大模型,要跟着大模型进化“迎接世界顶级的机器人!”一女子体内植入了52个装置,能开锁、开电脑,甚至能让手产生振动...科研上新 | 大模型推进科研边界;大模型的道德价值对齐;优化动态稀疏深度学习模型;十亿规模向量搜索的高效更新上海青浦大观园当妈妈学会讨厌孩子后,才能真正开始爱TAErich Segal [love story], why famous?千元成本搞定专业大模型,系统优化+开源大模型是关键 | 潞晨卞正达@MEET2024大模型,手机不能承受之重?手机大模型爆发:vivo 发布自研蓝心大模型,参数追赶 GPT-3AI早知道|百度推出视频生成模型UniVG;Soul APP上线自研语言大模型;清华大学首个大模型 Debug手机能跑百亿参数大模型,骁龙8Gen3来了,自研PC架构上线
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。