Redian新闻
>
OpenAI新模型用的嵌入技术被网友扒出来了!

OpenAI新模型用的嵌入技术被网友扒出来了!

公众号新闻

点击下方卡片,关注“CVer”公众号

AI/CV重磅干货,第一时间送达

点击进入—>【CV算法和求职】交流群

扫描下方二维码,加入CVer学术星球可以获得最新顶会/顶刊上的论文ideaCV从入门到精通资料,及最前沿应用!发论文搞科研,强烈推荐!

转载自:云头条 | 编辑:蛋酱

学起来吧。

前几天,OpenAI 来了一波重磅更新,一口气宣布了 5 个新模型,其中就包括两个新的文本嵌入模型。


我们知道,嵌入是表示自然语言或代码等内容中概念的数字序列。嵌入使得机器学习模型和其他算法更容易理解内容之间的关联,也更容易执行聚类或检索等任务。


使用更大的嵌入(比如将它们存储在向量存储器中以供检索)通常要比更小的嵌入消耗更高的成本、以及更多的算力、内存和存储。而 OpenAI 此次推出的两个文本嵌入模型分别是更小且高效的 text-embedding-3-small 模型和更大且更强大的 text-embedding-3-large 模型。


这两个新嵌入模型都使用一种技术进行训练,允许开发人员权衡使用嵌入的性能和成本。具体来说,开发者通过在 dimensions API 参数中传递嵌入而不丢失其概念表征属性,从而缩短嵌入(即从序列末尾删除一些数字)。例如在 MTEB 基准上,text-embedding-3-large 可以缩短为 256 的大小, 同时性能仍然优于未缩短的 text-embedding-ada-002 嵌入(大小为 1536)。


这一技术应用非常灵活:比如当使用仅支持最高 1024 维嵌入的向量数据存储时,开发者现在仍然可以使用最好的嵌入模型 text-embedding-3-large 并指定 dimensions API 参数的值为 1024,使得嵌入维数从 3072 开始缩短,牺牲一些准确度以换取更小的向量大小。


OpenAI 所使用的「缩短嵌入」方法,随后引起了研究者们的广泛注意。


人们发现,这种方法和 2022 年 5 月的一篇论文所提出的「Matryoshka Representation Learning」方法是相同的。



OpenAI 的新嵌入模型更新背后隐藏的是 @adityakusupati 等人提出的一种很酷的嵌入表征技术。


而 MRL 的一作 Aditya Kusupati 也现身说法:「OpenAI 在 v3 嵌入 API 中默认使用 MRL 用于检索和 RAG!其他模型和服务应该很快就会迎头赶上。」


那么 MRL 到底是什么?效果如何?都在下面这篇 2022 年的论文里。


MRL 论文介绍


  • 论文标题:Matryoshka Representation Learning

  • 论文链接:https://arxiv.org/pdf/2205.13147.pdf


研究者提出的问题是:能否设计一种灵活的表征方法,以适应计算资源不同的多个下游任务?


MRL 通过以嵌套方式对 O (log (d)) 低维向量进行显式优化在同一个高维向量中学习不同容量的表征,因此被称为 Matryoshka「俄罗斯套娃」。MRL 可适用于任何现有的表征 pipeline,并可轻松扩展到计算机视觉和自然语言处理中的许多标准任务。


图 1 展示了 MRL 的核心理念以及所学习 Matryoshka 表征的自适应部署设置:


Matryoshka 表征的第一个 m-dimensions(m∈[d])是一个信息丰富的低维向量,不需要额外的训练成本,其精确度不亚于独立训练的 m 维表征法。Matryoshka 表征的信息量随着维度的增加而增加,形成了一种从粗到细的表征法,而且无需大量的训练或额外的部署开销。MRL 为表征向量提供了所需的灵活性和多保真度,可确保在准确性与计算量之间实现近乎最佳的权衡。凭借这些优势,MRL 可根据精度和计算约束条件进行自适应部署。

在这项工作中,研究者将重点放在了现实世界 ML 系统的两个关键构件上:大规模分类和检索。


在分类方面,研究者使用了自适应级联,并使用由 MRL 训练的模型产生的可变大小表征,从而大大降低了达到特定准确率所需的嵌入式平均维数。例如,在 ImageNet-1K 上,MRL + 自适应分类的结果是,在精度与基线相同的情况下,表征大小最多可缩小 14 倍。


同样地,研究者在自适应检索系统中也使用了 MRL。在给定一个查询的情况下,使用查询嵌入的前几个 dimensions 来筛选检索候选对象,然后连续使用更多的 dimensions 对检索集进行重新排序。与使用标准嵌入向量的单次检索系统相比,这种方法的简单实现可实现 128 倍的理论速度(以 FLOPS 计)和 14 倍的墙上时钟时间速度;需要注意的是,MRL 的检索精度与单次检索的精度相当(第 4.3.1 节)。


最后,由于 MRL 明确地学习了从粗到细的表征向量,因此直观地说,它应该在不同 dimensions 之间共享更多的语义信息(图 5)。这反映在长尾持续学习设置中,准确率最多可提高 2%,同时与原始嵌入一样稳健。此外,由于 MRL 具有粗粒度到细粒度的特性,它还可以用作分析实例分类难易程度和信息瓶颈的方法。


更多研究细节,可参考论文原文。

快点击进入—>【CV算法和求职】交流群


计算机视觉技术交流群成立

扫描下方二维码,或者添加微信:CVer444,即可添加CVer小助手微信,便可申请加入CVer-计算机视觉微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer、NeRF等。


一定要备注:研究方向+地点+学校/公司+昵称(如目标检测+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群

▲扫码或加微信号: CVer444,进交流群


CVer计算机视觉(知识星球)来了!想要了解最新最快最好的CV/DL/AI论文速递、优质实战项目、AI行业前沿、从入门到精通学习教程等资料,欢迎扫描下方二维码,加入CVer计算机视觉(知识星球),已汇集近万人!


扫码加入星球学习


▲点击上方卡片,关注CVer公众号

整理不易,请点赞和在看

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
AI早知道|北大团队推出MBTI神器;OpenAI取消AI模型对军用应用的禁令文革中铺设了第一条输油管道的留美工程师翁心源被当作潜伏特务而自杀凯特商店现身12小时后,“替身”名字都被扒出来了!细数王室这3个月的骚操作,不怪人不信...新款 iPad Pro 细节曝光/OpenAI 发布新模型/微软宣布动视暴雪大裁员浓人,nèng死淡人[吃瓜]“凯特现身”了 面带笑容!结果网友连替身名字都扒出来了……纯文本模型训出「视觉」表征!MIT最新研究:语言模型用代码就能作画相聚多伦多(二十六) 但求心安3D重建范式变革!最新模型MVDiffusion++:无需相机姿态,即可实现高清3D模型重建骂上热搜!墨尔本知名餐厅惨遭曝光,旺季Surcharge都整出来了?网友:快点出来管管吧!hé bàng?hé bèng?OpenAI创始人:目前的首要任务是推出新模型;三星发布搭载谷歌AI工具的Galaxy S24智能手机丨AIGC日报一锤降维!解密OpenAI超级视频模型Sora技术报告,虚拟世界涌现了OpenAI硬怼马斯克:没到AGI,就不开源;求职人潮“挤崩”智联招聘;周鸿祎、李志飞开AI 课,被网友质疑 | AI周报OpenAI新模型用的嵌入技术被网友扒出来了击败OpenAI,权重、数据、代码全开源,能完美复现的嵌入模型Nomic Embed来了心疼凯特带病出镜,网友扒出11处破绽质疑造假,美国医生直指王妃细节撒谎马斯克被爆和女总理史诗级大瓜!网友扒出海量线索:这也太巧了吧?德约科维奇在澳网比赛中喝的神秘水,被人扒出来了68、长篇民国小说《永泰里》第十四章 势不两立(1)马斯克女总理桃色绯闻!网友扒出海量蛛丝马迹:这也太巧了吧?德州男子因错误的面部识别技术被指控犯罪突发!谷歌华人工程师涉嫌窃取技术被捕!将被遣返回国!英伟达 RTX 4080 SUPER GPU 跑分出炉:OpenCL 测试比非 SUPER 版高 7%传微软OpenAI领投人形机器人;OpenAI一键调用GPTs功能上线;年度大模型评测榜单公布丨AIGC大事日报如何让企业把大模型用起来?零一万物的答案是 API 开放平台Sora 究竟有多烧钱?Sora的推理与训练的计算成本被扒出来了Anthropic找到了打败OpenAI的方法:自己也成为OpenAI逼近GPT-4的新模型发布!「欧洲版OpenAI 」联手微软,却被质疑违背初心苹果首夺中国智能手机市场年度第一/特斯拉人形机器人最早明年交付/OpenAI 推出新模型今日arXiv最热大模型论文:清华把大模型用于城市规划,回龙观和大红门地区成研究对象神通广大的网友扒出凯特替身名字!英媒视频被指造假,全网炸锅!微软Copilot更新 包括新模型、新搜索以及代码解释器美国被曝已回收至少9艘“非人类制造飞船”:有2艘完好无损文革受难者协和医院助教两个小孩的母亲李子瑛
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。