Llama3发布,开源模型追上闭源模型的历史时刻就在眼前了?公众号新闻2024-04-19 03:04来源丨硅星GenAI(ID:gh_e06235300f0d)作者丨张潇雪图源丨Together AI今天AI圈又迎来一件大事:Meta正式发布他们迄今最强的新一代开源大语言模型Llama3。首批发布的Llama3 8B和Llama3 70B包括预训练和指令微调版本,8K上下文,在两个24K GPU定制集群上使用15万亿tokens数据训练而成,Meta称它们分别是80亿和700亿参数上最好的模型。同时一个参数超过400B的「最大Llama3」也在训练中,社区认为这个模型更恐怖,极有可能超过当前的闭源王者GPT-4 Turbo。Llama3在各种行业基准测试中表现惊艳,广泛支持各种场景。接下来几个月,Meta将陆续引入新的功能,包括多语言对话、多模态、更长的上下文和更强整体核心性能,并将与社区分享研究论文。扎克伯格和Meta首席AI科学家Yann LeCun分别在Instagram和X宣布了这一消息。网友们在评论区一片沸腾,马斯克前排回应,不错(有种淡淡的忧伤)。我们赶快来看看Llama 3的具体性能表现:多项测试成绩大幅超过Gemini 1.5和Claude SonnetMeta表示,新一代Llama3在Llama 2 的基础上有了重大飞跃,确立了 LLM的新标准。在预训练和后训练过程上的改进大大降低了错误拒绝率,提高了一致性,并增加了模型响应的多样性。在推理、代码生成和指令遵循等方面都得到了极大改善,使得 Llama 3 更加可控。对照表中可见,Llama3 8B在大规模多任务语言理解、生成式预训练问题回答、编码和数学等LLM核心基准测试上都力挫Gemma 7B和Mistral 7B。Llama3 70B同样战胜 Gemini Pro 1.5和此前被夸爆了的Claude 3 Sonnet。预训练版本的Llama3 8B和70B也在通用智能评估、困难任务、ARC挑战赛、DROP数据集上把Mitral 7B、Gemma 7B、Gemini Pro 1.0、新出的Mixtral 8x22B 打入手下败将之列。除了关注LLM标准基准测试项目, Meta还寻求模型在现实场景中的性能优化。为此,他们开发了一套新的高质量人工评估集。包含 1800 个提示,涵盖了“寻求建议、头脑风暴、分类、封闭式问题回答、编码、创意写作、提取、模拟角色/人物、开放式问题回答、推理、重写和总结” 这12 个关键用例。为了防止发生意外过拟合,即使是 Meta自己的建模团队也无法访问它。在这套评估集上, Llama3 70B与Claude Sonnet、Mistral Medium、GPT-3.5 和上一代Llama2对战后胜率突出。(这里没有把GPT-4和Claude 3 Opus拉来对比,推测后续的400B模型将接过重任。)Llama 3有哪些技术创新Meta称,在Llama3的开发过程中秉承了创新、扩展规模和优化简洁性的设计理念。重点关注四个关键要素:模型架构、预训练数据、扩大预训练规模以及指令微调。下面分项来看:模型架构Llama 3 选择了一个相对标准的纯解码器 Transformer 架构。相比 Llama 2 的改进之处有:Llama 3 使用一个包含 128K tokens的分词器,可以更有效地编码语言,从而显著提高模型性能;在 8B 和 70B 两种规模上都采用了分组查询注意力(GQA)机制来提高模型推理效率;同时在 8192 个tokens的序列上训练模型,使用掩码确保自注意力不会跨越文档边界。训练数据Meta认为训练出最佳LLM的关键是要整理一个大型高质量训练数据集,为此他们投入了大量资源:Llama 3 在超过 15 万亿个公开可用来源的token上进行了预训练,比训练 Llama 2 时的数据集足足大 7 倍,代码量是 Llama 2 的 4 倍。其中超过 5% 来自高质量非英语数据,总共涵盖了 30 多种语言,以为即将到来的多语言使用场景做准备。Llama3团队开发了一系列数据过滤管道来保证数据质量。他们还进行了大量实验,来评估在最终预训练数据集中混合不同来源数据的最佳方式,以此来选择一个包括STEM、编码、历史知识等等数据类别的最优数据组合,确保 Llama 3 在各种使用场景中表现良好。扩大预训练规模为了更有效利用预训练数据,Meta针对下游基准评估开发了一系列详细的扩展法则,在实际训练模型之前就能预测最大模型在关键任务上的性能,来确保最终模型在各种使用场景和能力上都有出色的表现。在 Llama 3 的开发过程中,团队也对扩展行为有了一些新的观察。例如,尽管一个 8B 参数模型对应的最佳训练计算量是 200B个 tokens,但他们的 8B 和 70B 参数模型在接受高达 15 万亿个token训练后,性能仍然呈对数线性提高。Meta结合了三种并行化方式:数据并行、模型并行和管道并行,来训练最大的Llama3模型。最高效地实现在同时使用 16K 个 GPU 训练时,每个 GPU 的计算利用率超过 400 TFLOPS。他们还开发了一个先进的新训练堆栈,可以自动进行错误检测、处理和维护,并进行了一系列硬件和可扩展存储系统的改进。最终使总体有效训练时间超过 95%,与 Llama 2 相比训练效率提升了约 3 倍。指令微调方法创新为了在聊天场景中充分释放预训练模型的潜力,Meta也在指令微调方法上进行了创新。后训练方法采用监督微调(SFT)、拒绝采样、邻近策略优化(PPO)和直接策略优化(DPO)的组合。在模型质量上的最大改进来自于仔细整理的训练数据,并对人工标注人员提供的标注进行多轮质量保证。通过 PPO 和 DPO 从偏好排序中学习,也大大提高了 Llama 3 在推理和编码任务上的性能。团队发现,当你问模型一个它难以回答的推理问题时,模型会产生正确的推理轨迹:知道如何得出正确答案,但不知道如何选择它。通过在偏好排序上进行训练,模型就能学会如何去选择正确答案。哪里可以用到根据官方介绍,Llama 3 将很快在所有主要平台上可用,包括云服务商、API 提供商等。从AWS、Google Cloud、Databricks、Snowflake 、NVIDIA NIM到Hugging Face、Kaggle、IBM WatsonX、Microsoft Azure——Llama 3 将无处不在。它也得到了 AMD、AWS、Dell、Intel、NVIDIA 和 Qualcomm 提供的硬件平台支持。对于普通用户来说,最方便直接感受Llama3的方式就是通过 Meta AI。除了在WhatsApp、Messenger、Instagram、Facebook等应用与Meta AI聊天助手对话外,今天还推出了网页版https://www.meta.ai/。即开即用,可以输入文本提问来生成图片和简单代码,支持实时搜索,其它功能还不是很完善。如果想存储历史记录则需登录Facebook账号。真正的“GPT-4级”开源模型就在眼前而Meta透露,Llama 3 8B 和 70B 只是 Llama 3 系列的开始,更多令人期待的东西即将到来。一个超过 400B 参数的最大模型正在训练中,开发团队对此感到兴奋。未来几个月,Meta将发布多个新功能,包括多模态、多语言对话能力、更长的上下文窗口以及更强大的整体能力。一旦完成所有Llama 3 的训练,他们也会发表一篇详细的研究论文供社区参考。Llama3 8B和70B,加上一个证实了正在训练的400B大模型,无疑向开源社区注入一支超强兴奋剂。而不久后即将发布的Llama3 400B+会有多厉害?大神卡帕西给予了很高评价:“Llama 3 是 Meta 一个看起来非常强大的模型。坚持基本原则,在可靠的系统和数据工作上花费大量高质量时间,探索长期训练模型的极限。我也对 400B 模型非常兴奋,它可能是第一个 GPT-4 级别的开源模型。我想很多人会要求更长的上下文长度。”同时他也提出了个人请求,希望能有比 8B 更小参数,理想规模在0.1B到1B左右的模型,用于教育工作、(单元)测试、嵌入式应用等。英伟达高级研究经理Jim Fan认为,它将标志着社区获得对「GPT-4级别模型」开放权重访问的分水岭时刻,这将改变许多研究工作和草根创业公司的计算方法。从当前预测数据来看,Llama3 400B+已经足以匹敌市场上最强大的Claude 3 Opus和GPT-4。而Llama-3-400B仍在训练中,有望在接下来的几个月中变得更好。“有如此强大的基础设施,可以解锁很多研究潜力。期待整个生态系统的建设者能量激增!”一个让所有人必须考虑的事实就是:开源模型追上闭源模型的历史时刻可能就在眼前了。这对开发者可能意味着,AI应用可以更加快速的涌现和迭代出来。而对创业公司们来说,则意味着更彻底的思路上的冲击。它直接影响到所有以闭源模型 API 为核心的商业模式——既然免费的足够好用,为什么还要花钱呢?更重要的是,如果连OpenAI、Google和Anthropic神秘的工具箱都不再高不可攀,那做一个比不上开源最强水平的闭源模型的意义何在呢。最后还是不得不问一句:GPT-5,你到底在哪里呢?微信扫码关注该文公众号作者戳这里提交新闻线索和高质量文章给我们。来源: qq点击查看作者最近其他文章