CVPR 2024 | 双手协作双物体的数据集TACO:引领可泛化手物交互的新方向
论文链接:
项目主页:
视频链接:
数据集链接:
代码链接:
TL; DR
本工作构建了一个大规模双手协作双物体的数据集 TACO,涵盖了大量日常生活中双手使用工具进行多物体协作的场景,通过提供丰富的交互三元组数据(工具、动作、使用对象),为通用手物交互的理解与生成带来了新的挑战和机遇。
构建了 TACO 数据集,是首个真实世界中大规模四维双手协作多物体的数据集,涵盖多样的“工具-动作-使用对象”的组合和物体几何形状。 设计了一个全自动的数据标注方法,能够获取手和物体精确的网格序列和二维掩码,以及无标志点的彩色图像。 提出了三个关注可泛化的手物交互理解与生成的基准任务,并详细探讨了 TACO 数据集带来的挑战和机遇。
数据集动作示例如下:
TACO 数据集包含 2.5K 段交互动作、20 种家用物体类别、196 个物体网格模型、15 种家务动作和 14 位采集员,涵盖共计 131 种“工具-动作-使用对象”的交互三元组。如下面的视频和图片所示,数据集的物体形状多样,且不同三元组之间关系紧密,因而其能够支持不同物体几何形状、不同物体类别、不同动作类别等多个方面的泛化性研究。
S1:无泛化。工具的几何形状和交互三元组均存在于训练集。 S2:几何形状的泛化。工具的几何形状是全新的,交互三元组存在于训练集。 S3:交互三元组的泛化。交互三元组是全新的,而工具的类别和几何形状均存在于训练集。 S4:综合泛化。工具的类别是全新的,导致出现新的工具的几何形状和交互三元组。
总结
本工作在 TACO 数据集上提出了三个基准任务:动作识别、动作预测和合作式抓取生成。实验表明现有方法在跨三元组的动作理解和在新物体、新类别上的抓取生成等方面尚存较大的提升空间。
参考文献
[1] Franziska Krebs, Andre Meixner, Isabel Patzer, and Tamim Asfour. The kit bimanual manipulation dataset. In 2020 IEEE-RAS 20th International Conference on Humanoid Robots (Humanoids), pages 499–506. IEEE, 2021.
[2] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767, 2018.
[3] MMPose Contributors. Openmmlab pose estimation toolbox and benchmark. https://github.com/openmmlab/mmpose, 2020.
[4] Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6):381–395, 1981.
[5] Javier Romero, Dimitrios Tzionas, and Michael J Black. Embodied hands: Modeling and capturing hands and bodies together. arXiv preprint arXiv:2201.02610, 2022.
[6] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. arXiv preprint arXiv:2304.02643, 2023.
[7] Roman Suvorov, Elizaveta Logacheva, Anton Mashikhin, Anastasia Remizova, Arsenii Ashukha, Aleksei Silvestrov, Naejin Kong, Harshith Goka, Kiwoong Park, and Victor Lempitsky. Resolution-robust large mask inpainting with fourier convolutions. arXiv preprint arXiv:2109.07161, 2021.
[8] Taojiannan Yang, Yi Zhu, Yusheng Xie, Aston Zhang, Chen Chen, and Mu Li. AIM: Adapting image models for efficient video action recognition. In The Eleventh International Conference on Learning Representations, 2023.
[9] Gorjan Radevski, Marie-Francine Moens, and Tinne Tuytelaars. Revisiting spatio-temporal layouts for compositional action recognition. arXiv preprint arXiv:2111.01936, 2021.
[10] Sirui Xu, Zhengyuan Li, Yu-Xiong Wang, and Liang-Yan Gui. Interdiff: Generating 3d human-object interactions with physics-informed diffusion. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 14928–14940, 2023.
[11] Enric Corona, Albert Pumarola, Guillem Alenya, and Francesc Moreno-Noguer. Context-aware human motion prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 6992–7001, 2020.
[12] Guy Tevet, Sigal Raab, Brian Gordon, Yonatan Shafir, Daniel Cohen-Or, and Amit H Bermano. Human motion diffusion model. arXiv preprint arXiv:2209.14916, 2022.
[13] Shaowei Liu, Yang Zhou, Jimei Yang, Saurabh Gupta, and Shenlong Wang. Contactgen: Generative contact modeling for grasp generation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 20609–20620, 2023.
[14] Korrawe Karunratanakul, Adrian Spurr, Zicong Fan, Otmar Hilliges, and Siyu Tang. A skeleton-driven neural occupancy representation for articulated hands. In 2021 International Conference on 3D Vision (3DV), pages 11–21. IEEE, 2021.
更多阅读
#投 稿 通 道#
让你的文字被更多人看到
如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。
总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。
PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析、科研心得或竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。
📝 稿件基本要求:
• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注
• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题
• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算
📬 投稿通道:
• 投稿邮箱:[email protected]
• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者
• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿
△长按添加PaperWeekly小编
🔍
现在,在「知乎」也能找到我们了
进入知乎首页搜索「PaperWeekly」
点击「关注」订阅我们的专栏吧
微信扫码关注该文公众号作者