Redian新闻
>
胡渊鸣:import 一个“太极”库,让 Python 代码提速100倍!

胡渊鸣:import 一个“太极”库,让 Python 代码提速100倍!

公众号新闻

丰色 发自 凹非寺 量子位 | 公众号 QbitAI

众所周知,Python的简单和易读性是靠牺牲性能为代价的——

尤其是在计算密集的情况下,比如多重for循环。

不过现在,大佬胡渊鸣说了:

只需import 一个叫做“Taichi”的库,就可以把代码速度提升100倍


不信?

来看三个例子。

计算素数的个数,速度x120

第一个例子非常非常简单,求所有小于给定正整数N的素数。

标准答案如下:

我们将上面的代码保存,运行。

当N为100万时,需要2.235s得到结果:

现在,我们开始施魔法。

不用更改任何函数体,import“taichi”库,然后再加两个装饰器:

Bingo!同样的结果只要0.363s,快了将近6倍。

如果N=1000万,则只要0.8s;要知道,不加它可是55s,一下子又快了70倍

不止如此,我们还可以在ti.init()中加个参数变为ti.init(arch=ti.gpu) ,让taich在GPU上进行计算。

那么此时,计算所有小于1000万的素数就只耗时0.45s了,与原来的Python代码相比速度就提高了120倍

厉不厉害?

什么?你觉得这个例子太简单了,说服力不够?我们再来看一个稍微复杂一点的。

动态规划,速度x500

动态规划不用多说,作为一种优化算法,通过动态存储中间计算结果来减少计算时间。

我们以经典教材《算法导论》中的经典动态规划案例“最长公共子序列问题(LCS)”为例。

比如对于序列a = [0, 1, 0, 2, 4, 3, 1, 2, 1]和序列b = [4, 0, 1, 4, 5, 3, 1, 2],它们的LCS就是:

LCS(a, b) = [0, 1, 4, 3, 1, 2]。

用动态规划的思路计算LCS,就是先求解序列a的前i个元素和序列b的前j个元素的最长公共子序列的长度,然后逐步增加i或j的值,重复过程,得到结果。

我们用f[i, j]来指代这个子序列的长度,即LCS((prefix(a, i), prefix(b, j)。其中prefix(a, i) 表示序列a的前i个元素,即a[0], a[1], …, a[i - 1],得到如下递归关系:

完整代码如下:

现在,我们用Taichi来加速:

结果如下:

胡渊鸣电脑上的程序最快做到了0.9秒内完成,而换成用NumPy来实现,则需要476秒,差异达到了超500倍!

最后,我们再来一个不一样的例子。

反应 - 扩散方程,效果惊人

自然界中,总有一些动物身上长着一些看起来无序但实则并非完全随机的花纹。

图灵机的发明者艾伦·图灵是第一个提出模型来描述这种现象的人。

在该模型中,两种化学物质(U和V)来模拟图案的生成。这两者之间的关系类似于猎物和捕食者,它们自行移动并有交互:

  1. 最初,U和V随机分布在一个域上;

  2. 在每个时间步,它们逐渐扩散到邻近空间;

  3. 当U和V相遇时,一部分U被V吞噬。因此,V的浓度增加;

  4. 为了避免U被V根除,我们在每个时间步添加一定百分比 (f) 的U并删除一定百分比 (k) 的V。

上面这个过程被概述为“反应-扩散方程”:


其中有四个关键参数:Du(U的扩散速度),Dv(V的扩散速度),f(feed的缩写,控制U的加入)和k(kill的缩写,控制V的去除)

如果Taichi中实现这个方程,首先创建网格来表示域,用vec2表示每个网格中U, V的浓度值。

拉普拉斯算子数值的计算需要访问相邻网格。为了避免在同一循环中更新和读取数据,我们应该创建两个形状相同的网格W×H×2。

每次从一个网格访问数据时,我们将更新的数据写入另一个网格,然后切换下一个网格。那么数据结构设计就是这样:


一开始,我们将U在网格中的浓度设置为 1,并将V放置在50个随机选择的位置:

那么实际计算就可以用不到10行代码完成:

@ti.kernel
def compute(phase: int):
    for i, j in ti.ndrange(W, H):
        cen = uv[phase, i, j]
        lapl = uv[phase, i + 1, j] + uv[phase, i, j + 1] + uv[phase, i - 1, j] + uv[phase, i, j - 1] - 4.0 * cen
        du = Du * lapl[0] - cen[0] * cen[1] * cen[1] + feed * (1 - cen[0])
        dv = Dv * lapl[1] + cen[0] * cen[1] * cen[1] - (feed + kill) * cen[1]
        val = cen + 0.5 * tm.vec2(du, dv)
        uv[1 - phase, i, j] = val

在这里,我们使用整数相位(0或1)来控制我们从哪个网格读取数据。

最后一步就是根据V的浓度对结果进行染色,就可以得到这样一个效果惊人的图案

有趣的是,胡渊鸣介绍,即使V的初始浓度是随机设置的,但每次都可以得到相似的结果。

而且和只能达到30fps左右的Numba实现比起来,Taichi实现由于可以选择GPU作为后端,轻松超过了 300fps。

pip install即可安装

看完上面三个例子,你这下相信了吧?

其实,Taichi就是一个嵌入在Python中的DSL(动态脚本语言),它通过自己的编译器将被 @ti.kernel 装饰的函数编译到各种硬件上,包括CPU和GPU,然后进行高性能计算。

有了它,你无需再羡慕C++/CUDA的性能。

正如其名,Taichi就出自太极图形胡渊鸣的团队,现在你只需要用pip install就能安装这个库,并与其他Python库进行交互,包括NumPy、Matplotlib和PyTorch等等。

当然,Taichi用起来和这些库以及其他加速方法有什么差别,胡渊鸣也给出了详细的优缺点对比,感兴趣的朋友可以戳下面的链接详细查看:

https://docs.taichi-lang.org/blog/accelerate-python-code-100x

END

官方站点:www.linuxprobe.com

Linux命令大全:www.linuxcool.com

刘遄老师QQ:5604241

Linux技术交流群:3762708

(新群,火热加群中……)

想要学习Linux系统的读者可以点击"阅读原文"按钮来了解书籍《Linux就该这么学》,同时也非常适合专业的运维人员阅读,成为辅助您工作的高价值工具书!


微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
PyTorch 2.0 来了!100% 向后兼容,一行代码将训练提速 76%《天才基本法》揭秘Python真实用法,留学生直呼“上当了”将你的 Python 脚本转换为命令行程序 | Linux 中国女儿女婿为中餐馆义务打工PyTorch 2.0来了!100%向后兼容,一行代码将训练提速76%!七夕10 个杀手级的 Python 自动化脚本!硬核观察 #739 Python 虽然是最受欢迎的编程语言,但是找工作还是要会点 SQLPython之谜:四舍五入round(4.5)等于4?33 个 "不得不看" 的 Python 关键字总结!硬核观察 #800 Python 3.11 发布:性能大幅提升10 个 Python 脚本来自动化你的日常任务用 Python 测试 API 的 3 种方式 | Linux 中国Python环境搭建手把手图文教程《天才基本法》完结!张子枫学Python的样子,像极了出国后的我自己...如何在 Ubuntu 和其他相关 Linux 中安装 Python 3.10 | Linux 中国官方发布!最适合留学生快速上手的python教程来了4 步打包一个新的 Python 模块 | Linux 中国Pleno:让癌症标靶检测提速1000倍,这家创业公司有独特的方法|科技前哨钱学森的传闻10个Python脚本来自动化你的日常任务第五代杨氏太极嫡传杨军湾区教授太极Gunicorn 与 Python GIL【一路有你】《最好的模样》2022 BY 碧蓝天从时速100公里行驶的车上向后发射时速100公里的棒球,球会停止运动吗?Julia 和 Python,哪一个更快? | Linux 中国Python 3.11 正式版来了,比 3.10 快 10-60%川味回锅肉,减肥的秘密用 Python 写了一个电子考勤系统!Python程序化套利实战班Python 3.11 正式版发布,比 3.10 快 10-60%,官方:这或许是最好的版本ChatGPT竟写出毁灭人类计划书,还给出相应Python代码,网友:AI正在指数级发展MNE/Python-fNIRS近红外数据处理中文手册10个 Python 脚本来自动化你的日常任务字节大佬编写的这本《Python背记手册》,带我横扫互联网大厂秋招!
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。