data science 面试求教# DataSciences - 数据科学
m*4
1 楼
本人CS硕, 最近在面开发的职位。前几天电面一家公司, 本来面后端开发的, 但是
聊的实验室项目, 他们挺感兴趣。
我们实验室是做识别的, 所以会用到很多classifier. 就聊聊ML的东西。 结果给我
发了个 data science challenge.
预测房价, 给了几万条training数据,有房价, feature 比如房屋类型, 地理位
置, 距离城里多远,有数字类型的, 也有categorical 的。
然后又有几万条数据同样类型的feature, 没房价,让建模型 预测。
要求一周内做出来,
提交代码。描述模型, 选的什么软件, 什么包
何种算法, 怎样选feature, 为什么
怎样分析模型的 accuracy , 用什么方法,为什么选这个方法
那个feature 影响高, 那个影响低, 用什么方法找的。
数据有错误, 要求清洗, 哪些清洗时必要的
---------------------------------
我们实验室就是用用 naive bayes, SVM 啥的。 没人真懂。
我觉得这是回归不是分类。 我上统计课的时候知道些线性回归的皮毛。
觉得此题对版上的人来说是小菜一碟, 特来讨教
聊的实验室项目, 他们挺感兴趣。
我们实验室是做识别的, 所以会用到很多classifier. 就聊聊ML的东西。 结果给我
发了个 data science challenge.
预测房价, 给了几万条training数据,有房价, feature 比如房屋类型, 地理位
置, 距离城里多远,有数字类型的, 也有categorical 的。
然后又有几万条数据同样类型的feature, 没房价,让建模型 预测。
要求一周内做出来,
提交代码。描述模型, 选的什么软件, 什么包
何种算法, 怎样选feature, 为什么
怎样分析模型的 accuracy , 用什么方法,为什么选这个方法
那个feature 影响高, 那个影响低, 用什么方法找的。
数据有错误, 要求清洗, 哪些清洗时必要的
---------------------------------
我们实验室就是用用 naive bayes, SVM 啥的。 没人真懂。
我觉得这是回归不是分类。 我上统计课的时候知道些线性回归的皮毛。
觉得此题对版上的人来说是小菜一碟, 特来讨教