c*t
2 楼
easy. There is a scan line method.
Basically, let a horizontal line (or any arbitrary line, but horizontal
is easier computationally) go through the point. Then count the # of
interceptions of the curves on this line. If the point is inside the
curves, then the # of interceptions to the left of the point should be
odd.
,
【在 x*********l 的大作中提到】
: 请教大家一个算法的问题。在一个图像里有很多互相不相交的封闭曲线(任意形状),
: 如何判断任意一个点是在这些封闭曲线内,还是在曲线外?
Basically, let a horizontal line (or any arbitrary line, but horizontal
is easier computationally) go through the point. Then count the # of
interceptions of the curves on this line. If the point is inside the
curves, then the # of interceptions to the left of the point should be
odd.
,
【在 x*********l 的大作中提到】
: 请教大家一个算法的问题。在一个图像里有很多互相不相交的封闭曲线(任意形状),
: 如何判断任意一个点是在这些封闭曲线内,还是在曲线外?
x*l
4 楼
3x
【在 c*****t 的大作中提到】
: easy. There is a scan line method.
: Basically, let a horizontal line (or any arbitrary line, but horizontal
: is easier computationally) go through the point. Then count the # of
: interceptions of the curves on this line. If the point is inside the
: curves, then the # of interceptions to the left of the point should be
: odd.
:
: ,
【在 c*****t 的大作中提到】
: easy. There is a scan line method.
: Basically, let a horizontal line (or any arbitrary line, but horizontal
: is easier computationally) go through the point. Then count the # of
: interceptions of the curves on this line. If the point is inside the
: curves, then the # of interceptions to the left of the point should be
: odd.
:
: ,
l*u
5 楼
Sounds good. The only thing is that one needs to be careful in determining
if the line is intersecting, not just tangent, with the curve.
【在 c*****t 的大作中提到】
: easy. There is a scan line method.
: Basically, let a horizontal line (or any arbitrary line, but horizontal
: is easier computationally) go through the point. Then count the # of
: interceptions of the curves on this line. If the point is inside the
: curves, then the # of interceptions to the left of the point should be
: odd.
:
: ,
if the line is intersecting, not just tangent, with the curve.
【在 c*****t 的大作中提到】
: easy. There is a scan line method.
: Basically, let a horizontal line (or any arbitrary line, but horizontal
: is easier computationally) go through the point. Then count the # of
: interceptions of the curves on this line. If the point is inside the
: curves, then the # of interceptions to the left of the point should be
: odd.
:
: ,
相关阅读
开始学习Haskell求教Ubuntu桌面版如何在recovery命令行时上网BERT 到底行不行可以在 gce app engine部署机器,但用 aws dynamoDB 吗?java最大的问题就是让所有的别人写的JAR库放网上, 没有有懂petri net的么Perl会不会枯木返春?[bssd]再论《金瓶梅》:作者派来的人golang 真香 求叫醒Full story of GO's three level scheduler深学有一点真是前所未有的从假杨清 李家 等看wudong的对比说说Date和Time请教一个离散数学问题TF-IDF能检查源程序抄袭吗?给大家说说k8s到底是干啥的你们以为配置K8S是折腾的终点么?golang是第一个大规模multi-core, N:M thread model Language想听听大家意见:e commerce UI 框架 Vue react ?GPU OpenCL 工作机会,可以remote工作