请问一道关于order statistics的难题# Economics - 经济
f*g
1 楼
Let x(1),...,x(n) be order statistics drawn from an arbitrary distribution X
, where x(n) is the largest one.
Y is an arbitrary distribution independent with X.
Let Z=X+Y, and z(1),...,z(n) be order statistics drawn from Z.
我们能不能证明the expect value of z(n)-z(n-1) is greater than the expect
value of x(n)-x(n-1), namely, E[z(n)-z(n-1)]>E[x(n)-x(n-1)].
也就是说当加上一个independent variable以后,first order statistic和second
order statistic之差是否变大了呢?
, where x(n) is the largest one.
Y is an arbitrary distribution independent with X.
Let Z=X+Y, and z(1),...,z(n) be order statistics drawn from Z.
我们能不能证明the expect value of z(n)-z(n-1) is greater than the expect
value of x(n)-x(n-1), namely, E[z(n)-z(n-1)]>E[x(n)-x(n-1)].
也就是说当加上一个independent variable以后,first order statistic和second
order statistic之差是否变大了呢?