Redian新闻
>
请问一道关于order statistics的难题
avatar
请问一道关于order statistics的难题# Economics - 经济
f*g
1
Let x(1),...,x(n) be order statistics drawn from an arbitrary distribution X
, where x(n) is the largest one.
Y is an arbitrary distribution independent with X.
Let Z=X+Y, and z(1),...,z(n) be order statistics drawn from Z.
我们能不能证明the expect value of z(n)-z(n-1) is greater than the expect
value of x(n)-x(n-1), namely, E[z(n)-z(n-1)]>E[x(n)-x(n-1)].
也就是说当加上一个independent variable以后,first order statistic和second
order statistic之差是否变大了呢?
avatar
t*o
2
intuitively, I don't think it is true. You can run a numerical simulation to
check.
avatar
f*g
3
I have run a lot of simulations. All results were consistent with this
argument.
avatar
U*e
4
I think you conjecture is possible. A simple example is rv X being
degenerated and any rv Y can work like a spreading effect.
But I have not found the proof.
相关阅读
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。