Redian新闻
>
人类没有足够的高质量语料给AI学了,2026年就用尽,网友:大型人类文本生成项目启动!

人类没有足够的高质量语料给AI学了,2026年就用尽,网友:大型人类文本生成项目启动!

公众号新闻
萧箫 发自 凹非寺
量子位 | 公众号 QbitAI

AI胃口太大,人类的语料数据已经不够吃了。

来自Epoch团队的一篇新论文表明,AI不出5年就会把所有高质量语料用光

要知道,这可是把人类语言数据增长率考虑在内预测出的结果,换而言之,这几年人类新写的论文、新编的代码,哪怕全都喂给AI也不够

照这么发展下去,依赖高质量数据提升水平的语言大模型,很快就要迎来瓶颈

已经有网友坐不住了:

这太荒谬了。人类无需阅读互联网所有内容,就能高效训练自己。

我们需要更好的模型,而不是更多的数据。

还有网友调侃,都这样了不如让AI吃自己吐的东西:

可以把AI自己生成的文本当成低质量数据喂给AI。

让我们来看看,人类剩余的数据还有多少?

文本和图像数据“存货”如何?

论文主要针对文本图像两类数据进行了预测。

首先是文本数据

数据的质量通常有好有坏,作者们根据现有大模型采用的数据类型、以及其他数据,将可用文本数据分成了低质量高质量两部分。

高质量语料,参考了Pile、PaLM和MassiveText等大型语言模型所用的训练数据集,包括维基百科、新闻、GitHub上的代码、出版书籍等。

低质量语料,则来源于Reddit等社交媒体上的推文、以及非官方创作的同人小说(fanfic)等。

根据统计,高质量语言数据存量只剩下约4.6×10^12~1.7×10^13个单词,相比当前最大的文本数据集大了不到一个数量级。

结合增长率,论文预测高质量文本数据会在2023~2027年间被AI耗尽,预估节点在2026年左右。

看起来实在有点快……

当然,可以再加上低质量文本数据来救急。根据统计,目前文本数据整体存量还剩下7×10^13~7×10^16个单词,比最大的数据集大1.5~4.5个数量级。

如果对数据质量要求不高,那么AI会在2030年~2050年之间才用完所有文本数据。

再看看图像数据,这里论文没有区分图像质量。

目前最大的图像数据集拥有3×10^9张图片。

据统计,目前图片总量约有8.11×10^12~2.3×10^13张,比最大的图像数据集大出3~4个数量级。

论文预测AI会在2030~2070年间用完这些图片。

显然,大语言模型比图像模型面临着更紧张的“缺数据”情况。

那么这一结论是如何得出的呢?

计算网民日均发文量得出

论文从两个角度,分别对文本图像数据生成效率、以及训练数据集增长情况进行了分析。

值得注意的是,论文统计的不都是标注数据,考虑到无监督学习比较火热,把未标注数据也算进去了。

以文本数据为例,大部分数据会从社交平台、博客和论坛生成。

为了估计文本数据生成速度,有三个因素需要考虑,即总人口、互联网普及率和互联网用户平均生成数据量。

例如,这是根据历史人口数据互联网用户数量,估计得到的未来人口和互联网用户增长趋势:

再结合用户生成的平均数据量,就能计算出生成数据的速率。(由于地理和时间变化复杂,论文简化了用户平均生成数据量计算方法)

根据这一方法,计算得出语言数据增长率在7%左右,然而这一增长率会随着时间延长逐渐下降。

预计到2100年,我们的语言数据增长率会降低到1%

同样类似的方法分析图像数据,当前增长率在8%左右,然而到2100年图像数据增长率同样会放缓至1%左右。

论文认为,如果数据增长率没有大幅提高、或是出现新的数据来源,无论是靠高质量数据训练的图像还是文本大模型,都可能在某个阶段迎来瓶颈期。

对此有网友调侃,未来或许会有像科幻故事情节一样的事情发生:

人类为了训练AI,启动大型文本生成项目,大家为了AI拼命写东西。

他称之为一种“对AI的教育”:

我们每年给AI送14万到260万单词量的文本数据,听起来似乎比《黑客帝国》中人类当电池要更酷?

你觉得呢?

论文地址:
https://arxiv.org/abs/2211.04325

参考链接:
https://twitter.com/emollick/status/1605756428941246466

「2022人工智能年度评选」榜单揭晓

领航企业TOP50


点这里👇关注我,记得标星哦~

一键三连「分享」、「点赞」和「在看」

科技前沿进展日日相见 ~ 

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
大模型在文本生成领域有哪些最新尝试的工作?文革中批判邓小平的红卫兵说啥什么样的智能驾驶系统,能够给用户带来足够的安全感?消费当下和未来确定性足够的选择大规模预训练、可控文本生成方向,清华大学计算机系NLP实验室招聘博士后(长期有效)死后直接变肥料给家人种菜?美国"环保葬",7000美元直接降解尸体变土…以高质量审计监督护航上海经济社会高质量发展!市委审计委员会今天举行会议畅游法国(35)-勃艮第之王多处必有饥荒、地震,这都是灾难的起头!你有足够的警醒吗?东北首个核能供暖项目启动,24小时不间断供应!周边近2万居民受益GENIUS:一个基于“草稿”进行文本生成、数据增强的“小天才”模型一刻不停推进全面从严治党 以高质量党建引领保障工业和信息化高质量发展——工信部召开2023年党的建设暨党风廉政建设工作会议​GENIUS: 根据草稿进行文本生成的预训练模型,可用于多种NLP任务的数据增强【家族往事】姐姐的婚事致父母:你有足够多的耐心,才会有足够好的孩子 | 精选悉尼知名项目启动,迎元宵双喜临门!舞狮开道、土著仪式开场,近15万人见证“楼王”诞生!谷歌发布从文本生成音乐的AI作曲系统,但暂不计划发布基于预训练语言模型的可控文本生成Seq2Seq、SeqGAN、Transformer…你都掌握了吗?一文总结文本生成必备经典模型(一)因ChatGPT爆红的文本生成大模型中文文本生成发展到哪一步了?写方案、写广告的AI全能工具已上线喜报|国内首个诱导多能干细胞外泌体临床研究项目启动、ChatGPT能代替医生吗?失去瓶装尖叫,人类没有解药AudioLDM一作解读:文本生成高质量音频,单GPU即可项目启动会为什么很重要?南湾圣克拉拉县“新美国人”NAF暑期实习项目启动了!最高1万美金助学金,快来申请~瞭望丨专访国研中心副主任隆国强:以高质量外资助推中国经济高质量发展AIGC的浪潮下,文本生成发展得怎么样了?图文并茂|AIGC的浪潮下,文本生成发展得怎么样了?黑龙江为什么要换省会?水墨《行万里》GPT系列大模型在文本生成方向有哪些最新尝试?GPT、BERT、XLM、GPT-2、BART…你都掌握了吗?一文总结文本生成必备经典模型(二)@自费留学生,2022年度“国家优秀自费留学生奖学金” 项目启动实施佩洛西回应是否继续竞选 称麦卡锡没有足够票当选议长
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。