Redian新闻
>
什么样的数据分析,才算「有高度」?

什么样的数据分析,才算「有高度」?

公众号新闻

关注并将「人人都是产品经理」设为星标

每天早 07 : 45 按时送达

作为数据分析师,我们每天都在跑数,做分析,但是分析出来的内容总是被他人评价没有高度。那么,究竟什么样的数据分析,才能算得上有高度?作者分享了几点做有高度的分析的技巧,一起来看看吧。

作者:接地气的陈老师

微信公众号:接地气的陈老师

原文标题:这次分析,终于被评价为【有高度】

题图来自Unsplash,基于CC0协议

全文共2622字,阅读需要 5 分钟

——————/ BEGIN /——————

我们经常抱怨:每天工作都在跑数,做出来的东西,总被嫌弃“没高度”。都是统计计算,咋就需要“有高度”了?

今天通过我的一个真实案例,看看数据分析是怎么做到被评价为【有高度】的。

问题场景:某传统企业的电商部门,市场部领导找到数据分析师,拿了商品当前库存数据与周销售数据报表,请帮忙分析。

业务方表示:没有明确分析要求,做一个探索性分析。

问:这个分析该如何做?

负分的分析

  • 昨天库存120

  • 今天库存220

  • 环比增长83%,建议搞低

点评:懒得点评了,大家自行吐槽。

一般的分析

  • A产品周销量100,库存还有400,还能用4周

  • A产品补货周期为3周,可继续观察

  • B产品周销量100,库存还有200,还能用2周

  • B产品补货周期为2周,建议本周开始着手补货

点评:知道进、销、存的数据得连起来看,知道考虑补货周期,这起码及格了。

03

有点高度的分析

  • A产品有季节规律,目前在周期末尾,预计库存够消耗3周,不建议补货

  • B产品已到产品生命周期后半段,每周销量递减,应加速出货

  • C产品为非季节性标品,周销量100,库存200,还能用2周,本周可补货

点评:做数据分析工作和上学做作业的最大区别,就是“实际工作中没有标准考题,只有待解决的问题”。

因此并不是说业务部门甩一个数据,就只能看这一个数据的!并且,产品生命周期、自然周期、是否稳定销售,是不需要业务部门叨叨,数据分析师可以自己通过数据来发现的。所以想发现问题,没必要等着业务来教,完全可以自己主动出击。

从业务常识和数据表现两个角度,发现数据背后的规律。季节性商品:比如冬季保暖防寒、夏季降温解暑的产品,应季销量才好,并且如果今年冬天没这么冷/夏天没这么热,销量会打折,表现在数据上如下图所示:

生命周期性商品:比如电子产品、每季新款服装,上市后卖得价格最贵、销量最好,越往后越不值钱,等季节一换,新款一出,只能降价清仓。表现在数据上如下图所示:

稳定销售型商品:比如米、面、油、蛋,纸巾、洗发水、沐浴露,日常生活都需要,可能每周跟着整体销量(比如门店客流、网站流量)有波动,但大体上不会大起大落。表现在数据上如下图所示:

这些可以在平时日常数据中就发现规律,积累经验,不用等业务方叨叨才动手(很有可能,业务方自己清楚这些差异,所以自己动手算了数,也不会再问)。

需处理的2个小细节

细节一:如果不是经常补货的产品,而是新款产品,如何预测未来走势?最简单的做法是根据产品品牌、价格段,对产品定级别,根据过去同级别、同价格段的产品表现做参考(如下图)。

细节二:如果周期性销售产品,受到外部影响,比如下雨了,没生意,如何评估走势?最简单的做法是看影响因素的持续时间,根据过往影响,直接在未来持续时间内做调整(如下图)

当然还可以用更复杂的预测方法。有趣的是,这种预测会改变业务方的行为,因此不见得需要特别准地预测,比如二分类预测:2周内能销完/不能销完,就已经能促使业务方决定清不清货了。

这就又涉及到一个关键问题:精确度多少能接受。企业里数据分析工作和做作业的第二大区别,就是:“真实工作需要和各部门沟通,不是完了卷子等正确答案的”。

特别是在本案例的场景里:业务部门自己都稀里糊涂,没有明确目的!此时更不必强行追求计算结果的准确度,而是有了初步结论以后,就能开会沟通一轮,提示风险,了解内情。

除非遇到库存成本特别高且保质期很短的,比如生鲜中进口水果、海鲜,医疗用品中的冷柜存放的疫苗一类的特殊产品。

一般的产品都有一定周转空间,因此控库存的最终目标不是100%压点清仓,而是把库存控制在安全范围内即可。

所以与其自己纠结要死,不如看看目前市场部的库存压力是否能承受。那么,是否有更有高度的分析呢?

更有高度的分析

问一个简单的问题:市场部身为运转中枢,为啥销量、库存这么核心的数据还要跑来问呀!市场部的人跑上门问,这个动作本身就是大问题。

敏感度高的数据分析师,在跑数之前就应该感觉到不对劲了。事出反常必有妖,事前沟通很重要!具体情况可能有很多,但有个核心问题要首先解决:业务方到底是真不懂,还是假不懂!

不要笑!不要以为核心数据业务方就真的了如指掌。很有可能之前业务发展顺风顺水,所以大家都习惯拍脑袋了;也有可能之前吃了行业红利,真的是母猪飞上天。总之,如果是真不懂的话,就需要:

  • 建立数据监控体系

  • 诊断现有问题

  • 提供建议先处理眼前问题

培训相关人员,建立长效监督机制这样把商品运营的工作从原始状态,推进到数字化管理的状态。如果是假不懂,还要看是缺人手还是缺帮手!

如果是缺人手,需要人帮忙清理数据,这时候牢记:

  1. 上产品

  2. 上产品

  3. 上产品

数据产品才是解决处理数据人手不足的最优方案,不是再招聘几个Excel boy填坑。

Excel boy/Sql boy 的存在,本身就是数据工作的负担。既浪费成本,又不能体现绩效。业务能力强就上数据集市让他们拖拉拽;业务能力弱就固定看板,然后教他们看。

如果是缺帮手,就得看帮着干什么:

  • 某几款产品运作得不好,想提前清掉库存

  • 某几款新品想上,想把之前的几款当标杆,作为支撑依据

  • 某几款产品想大量补货,但是怕老板不批,想多一个人发声

  • ……

这些目的可不是业务方不表态,数据分析师能直接猜到的。所以业务方想让数据分析师帮忙发声,就老老实实表明来意,大家一起合计合计。

确实有业务方,喜欢阴阳怪气,有想法不说,非让数据分析师猜,猜不中就说:“好像分析得没高度,不符合业务期望呀”。这种做法就是在为事后甩锅做准备,不搭理也罢。

小结

在企业内谈分析高度,和在学校做科研谈高度完全不一样。科研领域才讲高精尖,用的方法越复杂、越前瞻、越先进越好。企业的目的是挣钱,挣钱讲究效率,讲究配合,讲究实用。

因此,有高度的顺序是:

  1. 结合业务情况 ≥ 单纯计算数字

  2. 发现业务问题 ≥ 单纯铺陈结果

  3. 达到业务目标 ≥ 单纯就数论数

在这个过程中,需要有基础业务理解,需要和业务紧密沟通,需要看具体目标量体裁衣,这才是提升分析高度的最有效手段。

—————— / END / ——————

产品经理培训产品运营培训企业内训服务

请在公众号后台回复「培训」了解更多

▼ 喜欢请分享&收藏,满意点个赞,最后点「在看」 ▼

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
爱攒垃圾袋,算「囤积癖」吗?缺血性脑血管病SCI论文大数据分析,中国群星闪耀!是的。对个体来说,还是法治清爽。但中国的“大局观”虽因压制个体而遭到反抗与蔑视,但却一直在整体层面起作用。悖论是求职干货 | 华为等企业2023秋招已开!海归求职:数据(数据分析、数据科学、工程)Pandas:用于数据分析和数据科学的最热门 Python 库 | Linux 中国做数据分析,99%的人读不懂这张图这年头靠稿费能养活自己吗?水到底能跨越什么样的高度?求职大视野 | top5金融本港数分硕的数据分析岗秋招之路(京东、美团、b站、快手、小红书等)数据分析师,如何在数据分析的流程中提供更大的价值?Flyme系统+iPhone机身=599元?小黄蜂10寨出「新高度」!行业入门|商业分析,一个看数据讲故事的行业……上海数据交易所&普华永道:数据要素视角下的数据资产化研究(97页)前端工程师学到什么程度,才算是有了技术壁垒?| 极客时间平面专业越来越卷,时间有限如何增加「作品丰富度」?求职大视野 | 国内top5港校商分的数据分析岗秋招之路(京东、美团、b站、快手、小红书等)打响跨域/中央计算「攻坚」战,这些头部企业已经抢先布局氢气有抗癌作用吗?机理是什么?附:大数据分析报告。下一个十年,我们需要一款什么样的分析型数据库?猫咪的吃美国再被攻陷!这一变种具有高度“免疫逃逸”能力!一周内新增感染占比超40%冠军故乡已经沸腾!踏上这座世界尽头的天堂国度,是多少人的「有生之年」?具有高度“免疫逃逸”能力!新变种XBB.1.5肆虐! 全美超40%新冠病例由其引发行业入门|商业分析,一个看数据讲故事的行业两千年秦兵马俑求职干货 | 拼多多 2023春招已开!海归求职:数据(数据分析、数据科学、工程)你有什么样的内心,就会感召什么样的能量解禁今宵博诱莱「有用」的用户分群模型,是什么样的?美国被「XBB毒株」爆炸式攻占!具有高度「免疫逃逸」能力!感染人数大幅增加!什么样的茶才算是“正季茶”?自学搞定3张谷歌认证的数据分析证书,我在LinkedIn收到20+内推彭博投资组合分析工具月报 | 关于FoF管理分析,你想知道的在这里求职干货|拼多多 2023秋招补录已开!海归求职:数据(数据分析、数据科学、工程)多域(跨域)计算「起势」,智能汽车赛道迎来新拐点
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。