大脑视觉信号被AI复现图像!CVPR最新研究!
转自:量子位
“现在Stable Diffusion已经能重建大脑视觉信号了!”
就在昨晚,一个听起来细思极恐的“AI读脑术”研究,在网上掀起轩然大波:
这项研究声称,只需用fMRI(功能磁共振成像技术,相比sMRI更关注功能性信息,如脑皮层激活情况等)扫描大脑特定部位获取信号,AI就能重建出我们看到的图像!
例如这是一系列人眼看到的图像,包括戴着蝴蝶结的小熊、飞机和白色钟楼:
AI看了眼人脑信号后,立马就给出这样的结果,属实把该抓的重点全都抓住了:
再发展一步,这不就约等于哈利波特里的读心术了吗??
更有网友感到惊叹:如果说ChatGPT开放API是件大事,那这简直称得上疯狂。
用Stable Diffusion可视化人脑信号
这项研究来自日本大阪大学,目前已经被CVPR 2023收录:
研究希望能从人类大脑活动中,重建高保真的真实感图像,来理解大脑、并解读计算机视觉模型和人类视觉系统之间的联系。
要知道,此前虽然有不少脑机接口研究,致力于从人类大脑活动中读取并重建信号,如意念打字等。
然而,从人类大脑活动中重建视觉信号——具有真实感的图像,仍然挑战极大。
例如这是此前UC伯克利做过的一项类似研究,复现一张人眼看到的飞机片段,但计算机重建出来的图像却几乎看不出飞机的特征。
这次,研究人员重建信号选用的AI模型,是这一年多在图像生成领域地位飞升的扩散模型。
当然,更准确地说是基于潜在扩散模型(LDM)——Stable Diffusion。
整体研究的思路,则是基于Stable Diffusion,打造一种以人脑活动信号为条件的去噪过程的可视化技术。
它不需要在复杂的深度学习模型上进行训练或做精细的微调,只需要做好fMRI(功能磁共振成像技术)成像到Stable Diffusion中潜在表征的简单线性映射关系就行。
它的概览框架是这样的,看起来也非常简单:
仅由1个图像编码器、1个图像解码器,外加1个语义解码器组成。
具体怎么work?
如下图所示,第一部分为本研究用到的LDM示意图。
其中ε代表图像编码器,D代表图像解码器,而τ是一个文本编码器(CLIP)。
重点是解码分析,如下图所示,模型依次从大脑早期(蓝色)和较高(黄色)视觉皮层内的fMRI信号中,解码出重建图像(z)和相关文本c的潜在表征。
然后将这些潜在表征当作输入,就可以得到模型最终复现出来的图像Xzc。
最后还没有完,如编码分析示意图,作者还构建了一个编码模型,用来预测LDM不同组件(包括图像z、文本c和zc)所对应的fMRI信号,它可以用来理解Stable Diffusion的内部过程。
可以看到,采用了zc的编码模型在大脑后部视觉皮层产生的预测精确度是最高的。(zc是与c进行交叉注意的反向扩散后,z再添加噪声的潜在表征)
相比其它两者,它生成的图像既具有高语义保真度,分辨率也很高。
还有用GAN重建人脸图像的
看完这项研究,已经有网友想到了细思极恐的东西:
这个AI虽然只是复制了“眼睛”所看到的东西。
但是否会有一天,AI能直接从人脑的思维、甚至是记忆中重建出图像或文字?
“语言的用处不再存在了”
于是有网友进一步想到,如果能读取记忆的话,那么目击证人的证词似乎也会变得更可靠了:
还别说,就在去年真有一项研究基于GAN,通过fMRI收集到的大脑信号重建看到的人脸图像:
不过,重建出来的效果似乎不怎么样……
显然,在人脸这种比较精细的图像生成上,AI“读脑术”还有很长一段路要走。
对于这种大脑信号重建的研究,也有网友提出了质疑。
例如,是否只是AI从训练数据集中提取出了相似的数据?
对此有网友回复表示,论文中的训练数据集和测试集是分开的:
作者们也在项目主页中表示,代码很快会开源。可以先期待一下~
项目地址:
https://sites.google.com/view/stablediffusion-with-brain/
参考链接:
[1]https://twitter.com/SmokeAwayyy/status/1631474973243236354
[2]https://twitter.com/blader/status/1631543565305405443
[3]https://news.berkeley.edu/2011/09/22/brain-movies/
[4]https://www.nature.com/articles/s41598-021-03938-w
推荐阅读
微信扫码关注该文公众号作者