Redian新闻
>
加特技只需一句话or一张图,Stable Diffusion的公司把AIGC玩出了新花样

加特技只需一句话or一张图,Stable Diffusion的公司把AIGC玩出了新花样

公众号新闻
机器之心报道
编辑:蛋酱
从文本生成图像,再到给视频加特效,下一个 AIGC 爆发点要出现了吗?

相信很多人已经领会过生成式 AI 技术的魅力,特别是在经历了 2022 年的 AIGC 爆发之后。以 Stable Diffusion 为代表的文本到图像生成技术一度风靡全球,无数用户涌入,借助 AI 之笔表达自己的艺术想象……


相比于图像编辑,视频编辑是一个更具有挑战性的议题,它需要合成新的动作,而不仅仅是修改视觉外观,此外还需要保持时间上的一致性。


在这条赛道上探索的公司也不少。前段时间,谷歌发布的 Dreamix 以将文本条件视频扩散模型(video diffusion model, VDM)应用于视频编辑。


近日,曾参与创建 Stable Diffusion 的 Runway 公司推出了一个新的人工智能模型「Gen-1」,该模型通过应用文本 prompt 或参考图像指定的任何风格,可将现有视频转化为新视频。



论文链接:https://arxiv.org/pdf/2302.03011.pdf

项目主页:https://research.runwayml.com/gen1


2021 年,Runway 与慕尼黑大学的研究人员合作,建立了 Stable Diffusion 的第一个版本。随后英国的一家初创公司 Stability AI 介入,资助了在更多数据上训练模型所需的计算费用。2022 年,Stability AI 将 Stable Diffusion 纳入主流,将其从一个研究项目转变为一个全球现象。


Runway 表示,希望 Gen-1 能像 Stable Diffusion 在图像上所做的那样为视频服务。


「我们已经看到图像生成模型的大爆炸,」Runway 首席执行官兼联合创始人 Cristóbal Valenzuela 说。「我真的相信,2023 年将是视频之年。」


具体来说,Gen-1 支持几种编辑模式:


1、风格化。将任何图像或 prompt 的风格转移到视频的每一帧。

2、故事板。将模型变成完全风格化和动画的渲染。

3、遮罩。分离视频中的主题并使用简单的文本 prompt 对其进行修改。

4、渲染。通过应用输入图像或 prompt,将无纹理渲染变成逼真的输出。

5、定制化。通过自定义模型以获得更高保真度的结果,释放 Gen-1 的全部功能。


在该公司官方网站上发布的 demo 中,展示了 Gen-1 如何丝滑地更改视频风格,来看几个示例。


比如将「街道上的人」变成「粘土木偶」,只需要一行 prompt:



或者将「堆放在桌上的书」变成「夜晚的城市景观」:



从「雪地上的奔跑」到「月球漫步」:



年轻女孩,竟然秒变古代先哲:



论文细节


视觉特效和视频编辑在当代媒体领域无处不在。随着以视频为中心的平台的普及,对更直观、性能更强的视频编辑工具的需求也在增加。然而,由于视频数据的时间性,在这种格式下的编辑仍然是复杂和耗时的。最先进的机器学习模型在改善编辑过程方面显示出了巨大的前景,但很多方法不得不在时间一致性和空间细节之间取得平衡。


由于引入了在大规模数据集上训练的扩散模型,用于图像合成的生成方法最近在质量和受欢迎程度上经历了一个快速增长阶段。一些文本条件模型,如 DALL-E 2 和 Stable Diffusion,使新手只需输入一个文本 prompt 就能生成详细的图像。潜在扩散模型提供了有效的方法,通过在感知压缩的空间中进行合成来生成图像。


在本论文中,研究者提出了一个可控的结构和内容感知的视频扩散模型,该模型是在未加字幕的视频和配对的文本 - 图像数据的大规模数据集上训练的。研究者选择用单目深度估计来表征结构,用预训练的神经网络预测的嵌入来表征内容。


该方法在其生成过程中提供了几种强大的控制模式:首先,与图像合成模型类似,研究者训练模型使推断出的视频内容,如其外观或风格,与用户提供的图像或文本 prompt 相匹配(图 1)。其次,受扩散过程的启发,研究者对结构表征应用了一个信息掩蔽过程,以便能够选择模型对给定结构的支持程度。最后,研究者通过一个自定义的指导方法来调整推理过程,该方法受到无分类指导的启发,以实现对生成片段的时间一致性的控制。



总体来说,本研究的亮点如下:


  • 通过在预训练图像模型中引入时间层,并在图像和视频上进行联合训练,将潜在扩散模型扩展到了视频生成领域;

  • 提出了一个结构和内容感知的模型,在样本图像或文本的指导下修改视频。编辑工作完全是在推理时间内进行的,不需要额外对每个视频进行训练或预处理;

  • 展示了对时间、内容和结构一致性的完全控制。该研究首次表明,对图像和视频数据的联合训练能够让推理时间控制时间的一致性。对于结构的一致性,在表征中不同的细节水平上进行训练,可以在推理过程中选择所需的设置;

  • 在一项用户研究中,本文的方法比其他几种方法更受欢迎;

  • 通过对一小部分图像进行微调,可以进一步定制训练过的模型,以生成更准确的特定主体的视频。


方法


就研究目的而言,从内容和结构的角度来考虑一个视频将是有帮助的。对于结构,此处指的是描述其几何和动态的特征,比如主体的形状和位置,以及它们的时间变化。对于内容,此处将其定义为描述视频的外观和语义的特征,比如物体的颜色和风格以及场景的照明。Gen-1 模型的目标是编辑视频的内容,同时保留其结构。


为了实现这一目标,研究者学习了视频 x 的生成模型 p (x|s, c),其条件是结构表征(用 s 表示)和内容表征(用 c 表示)。他们从输入视频推断出形状表征 s,并根据描述编辑的文本 prompt c 对其进行修改。首先,描述了对生成模型的实现,作为一个条件潜在的视频扩散模型,然后,描述了对形状和内容表征的选择。最后,讨论了模型的优化过程。


模型结构如图 2 所示。



实验


为了评估该方法,研究者采用了 DAVIS 的视频和各种素材。为了自动创建编辑 prompt,研究者首先运行了一个字幕模型来获得原始视频内容的描述,然后使用 GPT-3 来生成编辑 prompt。


定性研究


如图 5 所示,结果证明,本文的方法在一些不同的输入上表现良好。



用户研究


研究者还使用 Amazon Mechanical Turk(AMT)对 35 个有代表性的视频编辑 prompt 的评估集进行了用户研究。对于每个样本,均要求 5 个注解者在基线方法和本文方法之间对比对视频编辑 prompt 的忠实度(「哪个视频更好地代表了所提供的编辑过的字幕?」),然后以随机顺序呈现,并使用多数票来决定最终结果。


结果如图 7 所示:



定量评估


图 6 展示了每个模型使用本文框架一致性和 prompt 一致性指标的结果。本文模型在这两方面的表现都倾向于超越基线模型(即,在图的右上角位置较高)。研究者还注意到,在基线模型中增加强度参数会有轻微的 tradeoff:更大的强度缩放意味着更高的 prompt 一致性,代价是更低的框架一致性。同时他们还观察到,增加结构缩放会导致更高的 prompt 一致性,因为内容变得不再由输入结构决定。


定制化


图 10 展示了一个具有不同数量的定制步骤和不同水平的结构依附性 ts 的例子。研究者观察到,定制化提高了对人物风格和外观的保真度,因此,尽管使用具有不同特征的人物的驱动视频,但结合较高的 ts 值,还是可以实现精确的动画效果。



© THE END 

转载请联系本公众号获得授权

投稿或寻求报道:[email protected]

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
内卷的美食节目,2023如何玩出新花样?AIGC教程:Stable Diffusion精进,如何训练特定画风LoRA模型?大脑视觉信号被Stable Diffusion复现图像!“人类的谋略和谎言不存在了” | CVPR2023CVPR 2023 | GAN的反击!朱俊彦新作GigaGAN,出图速度秒杀Stable DiffusionStable Diffusion背后公司开源大语言模型,很火,但很烂疯狂烧钱、管理混乱、竞争激烈,Stable Diffusion 背后企业濒临倒闭AIGC教程:如何使用Stable Diffusion生成风格化游戏物品和图标精通Stable Diffusion画图,理解LoRA、Dreambooth、Hypernetworks四大模型差异阿拉斯加邮轮行程最精彩的地方安卓手机「跑」Stable Diffusion创新纪录,15秒内出图Jay Alammar再发新作:超高质量图解Stable Diffusion,看完彻底搞懂「图像生成」原理7 Papers & Radios | 一句话为视频加特效;迄今为止最全昆虫大脑图谱CVPR 2023 | GAN的反击!朱俊彦新作GigaGAN,出图速度秒杀Stable Diffusion!谷歌模型支持手机上跑Stable Diffusion;普华永道砸10亿美元投资AIGC;天翼云将推出大模型丨AIGC大事日报FastTrack Universität 2023莱比锡大学公立语言项目招生简章速度惊人!手机跑Stable Diffusion,12秒出图,谷歌加速扩散模型破记录AIGC教程:如何使用Stable Diffusion,实现PBR材质纹理自由?高中教师养出40亿美元超级独角兽,Stable Diffusion背后数据集创建者,还发布ChatGPT最大平替新冠腹泻AIGC教程:如何使用Stable Diffusion高效生产“等距游戏美术资源”?35张图,直观理解Stable DiffusionAI读脑炸裂!扫描大脑画面,Stable Diffusion逼真复现图像春节没玩上加特林的人,都急需一个浏阳朋友Stable Diffusion读你大脑信号就能重现图像,研究还被CVPR接收了五秒AI绘画出图,全球最快的Stable Diffusion终于来了! [ 第364期 ]AIGC玩出新花样!Stable Diffusion公司提出基于扩散模型的视频合成新模型生命的形观与气观:中西两个角度产生两个医学体系英伟达超快StyleGAN回归,比Stable Diffusion快30多倍,网友:GAN好像只剩下快了AIGC教程:如何在Photoshop内使用Stable Diffusion绘制高品质图片?美国著名博物馆你去过多少?(二)GAN的反击:朱俊彦CVPR新作GigaGAN,出图速度秒杀Stable Diffusion微档案---姚念媛入境美国档案你的“家”还能玩出哪些新花样?Stable Diffusion公司重磅开源大语言模型StableLM,又爆火了!爵士乐、放克钢琴曲,Stable Diffusion玩转跨界、实时生成音乐
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。