Redian新闻
>
MLPref放榜!大模型时代算力领域“潜力股”浮出水面:梅开二度拿下世界第一,今年获双料冠军

MLPref放榜!大模型时代算力领域“潜力股”浮出水面:梅开二度拿下世界第一,今年获双料冠军

科技
金磊 明敏 发自 凹非寺
量子位 | 公众号 QbitAI

后ChatGPT时代下的大模型“算力难”问题,“快、好、省”的解法,又来了一个。

就在今天,享有“AI界奥运会”之称的全球权威AI基准评测MLPerf Inference v3.0,公布了最新结果——

来自中国的AI芯片公司,墨芯人工智能(下文简称“墨芯”),在最激烈的ResNet50模型比拼中夺冠!

而且在此成绩背后,墨芯给大模型时代下的智能算力问题,提供了一个非常具有价值的方向——

它夺冠所凭借的稀疏计算,堪称是大模型时代最不容忽视的算力“潜力股”。

不仅如此,墨芯此次还是斩获了开放任务分区“双料冠军”的那种:

  • 墨芯S40计算卡,以127,375 FPS,获得单卡算力全球第一;

  • 墨芯S30计算卡,以383,520 FPS算力,获整机4卡算力全球第一。

而且墨芯靠着这套打法,在制程方面更是用首颗稀疏计算芯片12nm的AntoumⓇ打败了4nm

不得不提的是,这次对于墨芯而言,还是“梅开二度”;因为它在上一届MLPerf,凭借S30同样是拿下了冠军。

在与GPT-3参数相当的开源LLM——1760亿参数的BLOOM上,4张墨芯S30计算卡在仅采用中低倍稀疏率的情况下,就能实现25 tokens/s的内容生成速度,超过8张A100。

那么稀疏计算为什么对大模型有这般良效?

算力纪录再度被刷新

我们不妨先来看下,墨芯所刷新的纪录到底是怎样的一个水平。

以墨芯S40为例,在MLPerf数据中心的图像任务主流模型ResNet-50上,且在相同数据集、相同精度条件下,算力达127,375 FPS。

这个“分数”是老牌玩家英伟达H100、A100的1.4倍和2.9倍!

1、评测条件:MLPerf相同条件、数据集、精度;2、A100单卡算力数据选择近两届MLPerf最佳成绩;3、“*”代表稀疏等效算力。

而墨芯S30计算卡,正如我们刚才提到的,获得了ResNet-50模型“整机4卡”冠军,其算力383,520 FPS;是英伟达H100的4卡成绩的1.8倍,并且超过英伟达A100的8卡成绩。

1、评测条件:MLPerf相同模型、数据集、精度;2、“*”代表稀疏等效算力。

再从自身对比角度来看,墨芯S40计算卡比上届冠军S30计算卡的算力增幅达33%。

并且与上一次MLPerf相比,墨芯产品相较H100和A100的算力优势分别扩大了20%和90%。

1、评测条件:MLPerf相同条件、数据集、精度;2、A100单卡算力数据选择近两届MLPerf最佳成绩;3、“*”代表稀疏等效算力。

在NLP模型BERT上,墨芯S40计算卡算力5,069 SPS达到英伟达提交的A100算力的2.7倍。

1、评测条件:MLPerf相同模型、数据集、精度;2、“*”代表稀疏等效算力。

更重要的一点是,随着AIGC的大爆发,加速推理速度、可以在线实时交互,成为了亟待解决的需求,而这也是大模型落地的一大痛点。

而在本次MLPerf中,墨芯S30与S10计算卡在离线(Offline)与在线(Server)两种模式下,均展现出了优异的表现。

1、评测条件:MLPerf相同模型、数据集、精度;2、“*”代表稀疏等效算力。

这一点,便证明了稀疏计算是具备同时兼顾高吞吐、低延时的独特优势的。

为什么稀疏计算会成为正解?

简单理解,稀疏化就是一种聪明的数据处理和模型压缩方式,它让神经网络在计算时,能够仅启用所需的神经元。

而稀疏计算就是将原有AI计算的大量矩阵运算中,含有零元素或无效元素的部分剔除,以加快计算速度,由此也能进一步降低模型训练成本。

自从Transformers掀起大模型浪潮后,稀疏计算也成为了大厂关注的重点方向。

2021年,谷歌研究和OpenAI就罕见合作论文《Sparse is Enough in Scaling Transformers》,力证稀疏计算能为大模型带来数十倍加速。

而更早以前,2017年OpenAI就发布了稀疏计算内核,实现了在同等计算开销的情况下,能计算更深的神经网络。

谷歌这几年也密集发布了稀疏计算方面的多项工作,包括Pathways、PaLM、MoE、GLaM等。

其中Pathways架构是稀疏计算领域的一项重要工作。谷歌在当初发布时将其称为“下一代人工智能架构”,其技术博客由谷歌大脑负责人Jeff Dean亲自操刀撰写。

由此可见谷歌对Pathways架构及稀疏计算的重视。

这篇博客中写道,当今的模型是稠密、低效的,Pathways能将它们变得稀疏、高效。

Pathways能做的事,就是实现训练一个模型,完成成千上万件事情。

其核心原理在于稀疏计算,即在执行任务时仅稀疏激活模型的特定部分,计算真正有用的元素。

并且在该架构发布没几天后,谷歌就跟进了稀疏计算领域的另一项重要工作:发布基于Pathways架构的5400亿参数大模型PaLM

之后,谷歌还提出了首个多模态稀疏化模型LIMoE,它在降低模型计算量上的优势非常突出。

因为采用了稀疏计算,可以实现执行一次任务只调用模型中的一个子模型,那么这次任务的成本将会和标准Transformer差不多。比如LIMoE-H/14总共有5.6B参数,但是通过稀疏化,它只会使用每个token的675M参数。

就在今年ChatGPT大火后,稀疏化GPT方法也被提出,能够实现不降低模型效果的情况下,将大模型权重降低一半。

除了在算法架构方面以外,硬件计算侧对于稀疏化的关注也在提升。

比如英伟达就在其Ampere架构中首次支持2倍稀疏计算。

Ampere架构为英伟达A 100带来了第三代Tensor Core核心,使其可以充分利用网络权值下的细粒度稀疏化优势。

相较于稠密数学计算(dense math),能够在不牺牲深度学习矩阵乘法累加任务精度的情况下,将最大吞吐量提高了2倍。

以上大厂的动作,无疑都印证了稀疏计算会是大模型时代下AI计算的有效解之一。

由此也就不难理解,为什么墨芯会押中稀疏计算这一方向,并取得最新战绩。

一方面是很早洞察到了行业的发展趋势;另一方面也是自身快速准确做出了定位和判断。

墨芯创始人兼CEO王维表示,他们从2018、2019年就看到了稀疏计算给AI计算带来了数量级上的性能提升。

与此同时,Transformers开启了大模型时代,让AI从1.0时代步入2.0,推动了AI在应用场景、算力需求等方面的改变。

尤其是算力方面,王维认为已经产生了质变:

“小模型时代,用场景数据训练小模型,研发和部署周期短,对算力的需求主要是通用性、易用性。到了大模型时代,大模型主要基于Transformers模型架构,更追求计算速度和算力成本。”

而做稀疏计算,不只是墨芯一家想到了,前面提到英伟达也在推进这方面进展,不过王维表示,这对于GPU公司而言可能是“意外收获”,但如果专注稀疏计算的话,需要做的是十倍甚至百倍加速。

因此,墨芯选择的路线是从算法提升上升到软硬协同层面。

2022年,墨芯发布首颗高稀疏倍率芯片AntoumⓇ,能够支持32倍稀疏,大幅降低大模型所需的计算量。

墨芯在MLPerf中开放分区的提交结果刷新记录,也是对这一路线的进一步印证。

据透露,不仅在MLPerf上表现出色,墨芯的产品商业落地上也进展迅速。

墨芯AI计算卡发布数月就已实现量产,在互联网等领域成单落地。ChatGPT走红后墨芯也收到大量客户问询,了解稀疏计算在大模型上的算力优势与潜力。

如今,ChatGPT开启新一轮AI浪潮,大模型领域开启竞速赛、算力需求空前暴增。

如微软为训练ChatGPT打造了一台超算——由上万张英伟达A100芯片打造,甚至专门为此调整了服务器架构,只为给ChatGPT和新必应AI提供更好的算力。还在Azure的60多个数据中心部署了几十万张GPU,用于ChatGPT的推理。

毕竟,只有充足的算力支持,才能推动模型更快迭代升级。

怪不得行业内有声音说,这轮趋势,英伟达当属最大幕后赢家。

但与此同时,摩尔定律式微也是事实,单纯堆硬件已经无法满足当下算力需求,由此这也推动了算力行业迎来更新一轮机遇和变革。可以看到,近两年并行计算等加速方案愈发火热,这就是已经发生的变化。

而ChatGPT的火热,无疑加速了这一变革。在真实需求的推动下,算力领域硬件软件创新突破也会更快发生,模型会重新定义算法,算法会重新定义芯片。

你觉得呢?

「人工智能」、「智能汽车」微信社群邀你加入!

欢迎关注人工智能、智能汽车的小伙伴们加入交流群,与AI从业者交流、切磋,不错过最新行业发展&技术进展。

PS. 加好友请务必备注您的姓名-公司-职位噢 ~


点这里👇关注我,记得标星哦~

一键三连「分享」、「点赞」和「在看」

科技前沿进展日日相见 ~ 

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
张家界3男1女跳崖,遗书曝光,家属发声,自杀原因疑似浮出水面!毛爷爷的曾孙毛东东:今年已18岁,长相高大英俊,神似青年毛爷爷东南某省13个政法委书记罕见接连落马,一段鲜为人知的历史浮出水面80岁弟兄在生命最后10年暗助陌生人医药 在他葬礼上才浮出水面三年而立,这座城市新区要变“潜力股”为“绩优股”涉嫌诈骗!铝锭仓单爆雷追踪:中金圣源员工被抓,多家涉案仓库浮出水面特朗普最后的战役:公布2024竞选议程,副手浮出水面?又有新项目了?米哈游《R-project》《热血》浮出水面自制彩色三馅汤圆,好看还好吃Offer捷报 l Columbia生物统计Offer+1!谷歌实习内推+国际期刊资源理海S同学梅开二度,被藤校两大高含金量疯抢疯了吗?7年500倍,孟晚舟“火上浇油”!彻悟,AI投资之“锚”浮出水面……抖音员工yp“潜力股”,床上也带工牌?加州女子突然失踪!近40年后连环杀人案再度浮出水面,受害者或达25人(图)一种新型存储浮出水面,集成了DRAM和Flash的优势张家界跳崖事件发生15天后,“约死群”浮出水面,高校教师潜伏其中揭开痛心真相.....未央播报 | 中国版“巴III”浮出水面 香港证监会就监管虚拟资产交易平台的建议展开谘询妻子和驴友在山顶上激战,丈夫恼火要离婚,妻子:下次不要了李靓蕾再度出击,王力宏背后的女人浮出水面!陈建州怒批:恶意造谣!MLPerf最新发榜!这家AI芯片公司再获世界第一,大模型性能狂超A100最新消息!高速急刹车导致16死66伤?湖南高速罪魁祸首浮出水面!普丁接班人浮出水面?王小川新AI公司浮出水面:成立「五季智能」,召集搜狗旧部,水下估值接近独角兽让我国核武失效!美国巨大阴谋,浮出水面,外媒:恐有灭顶之灾MLPref放榜!大模型时代算力领域“潜力股”浮出水面做光做盐推特接班人浮出水面?学老板带娃睡办公室,拥抱硬核精神一周回顾 | 中国版“巴III”浮出水面 横琴、前海各迎三十条金融改革创新举措只有1月信贷"开门红"吗?上市银行2023年投放计划浮出水面恐慌蔓延!硅谷银行倒闭7天后,高盛爆出音频:背后黑手浮出水面…昨天!北京长峰医院29人死亡!更多细节被曝光!一个“大人物”浮出水面,千万别放过…“太子奶”真相浮出水面,背后的腐败网令人脊背发凉!对谈“乔布斯”,硅谷明星创投代表详谈AI潜力领域前夫结婚又生女,还想和我梅开二度,真相好扎心!邓小平下台后写了《我的自述》刘如谦新公司浮出水面,仍隐匿运行,正基于PACE开发新型蛋白酶,让蛋白质组编辑成为可能
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。