Redian新闻
>
人工智能会率先发现外星生命吗?

人工智能会率先发现外星生命吗?

公众号新闻


原文作者:Alexandra Witze

SETI,一项寻找地外智慧生命的研究项目,正在开发机器学习算法,过滤地球的干扰并挖掘人类可能错过的信号。

从西弗吉尼亚州的山丘到澳大利亚的乡野平原,一些世界上最大的望远镜正在监听来自遥远外星文明的信号。寻找外星智能(Search for Extraterrestrial Intelligence,缩写为 SETI)项目,致力于寻找人造电磁辐射信号——可能来自遥远恒星系统中的技术先进文明。1月30日发表的一项研究[1]描述了使用机器学习(人工智能的一个子类)帮助天文学家们从此类搜索所产生的海量数据中快速筛选数据的一项工作。AI已经重塑了诸多科学领域,它将为寻找地外生命带来怎样的愿景? 

机器学习擅长筛选出可能来自外星人的非常规信号。来源:Universal Pictures / Allstar / Alamy

“有了机器学习技术,这是SETI研究新纪元的开启。”加利福尼亚州SETI 研究所的行星天文学家Franck Marchis说。


大数据对于SETI来说是一个相对较新的难题。数十年来,该领域受限于数据量极少。天文学家Frank Drake于1960年开创了SETI——当时他将位于西弗吉尼亚州格林班克的望远镜指向了两颗恒星监听无线电信号。随后的大多数SETI搜索也仅限于少数恒星。


但在2015年,亿万富翁Yuri Milner在加利福尼亚州伯克利资助了有史以来最大的SETI计划:“突破聆听”计划(Breakthrough Listen),该计划旨在搜索一百万颗恒星以寻找智慧生命的迹象。该项目利用位于西弗吉尼亚州、澳大利亚和南非的望远镜,寻找来自恒星方向且频率稳定变化的无线电发射信号——若是某颗行星上有外星信号发射器相对地球移动,地球上就能收到此类规律的信号。

数据风暴

问题在于,这些搜索会产生海量数据——包括了手机、GPS和其它现代技术等地球干扰源产生的误报。


SETI研究所的天文学家Sofia Sheikh说:“如今我们搜寻SETI信号的最大问题不再是获取数据——而是区分开来自人类或地球技术的信号,和我们要寻找的来自银河系其他地方的信号。”

位于西弗吉尼亚州的绿湾射电天文望远镜(Robert C. Byrd Green Bank Telescope)是在寻找外星文明的几个望远镜之一。来源:Jim West/Alamy

手动处理这些数以百万计的观测数据是不现实的。一种常见的替代方法是使用算法来寻找与天文学家所预设的外星信标相匹配的信号。但这些算法可能会忽略与天文学家预期略有不同、然而潜在值得关注的信号。


机器学习有了用武之地。机器学习算法利用大量数据进行训练,可以学习识别源自地球的干扰信号的特征,从而可以极佳地滤除噪音。

被忽略的信号

加州大学伯克利分校的SETI科学家Dan Werthimer说,机器学习也擅长挑选出与传统模式不符的候选地外信号,而此前的方法可能会忽略这类信号。


加拿大多伦多大学的数学和物理学家、这篇论文的第一作者Peter Ma同意这个说法:“我们不总能预计地外文明会发什么给我们。”


“突破聆听”使用100米口径的绿湾射电望远镜(Robert C. Byrd Green Bank Telescope)观测820颗恒星,Ma和他的同事筛选了来自这些恒星的信号。他们开发了机器学习软件来分析这些数据:软件捕获了近300万个目标信号,但将大部分归于来自地球的干扰并将其移除。然后,Ma手动检查了两万多个信号,并锁定了八个有希望的候选信号。


然而搜索最终一无所获——当研究团队再次监听时,所有八个信号都消失了。但是这些方法可以用于其它数据,例如“突破聆听”项目于12月启用MeerKAT阵列(由南非64台射电望远镜组成)带来的海量观测数据。Ma说,机器学习算法还可以用于已存档的SETI数据,来寻找以前可能被忽视的信号。

SETI公民科学计划

机器学习也是将于下月启动的另一项SETI工作的重心。2月14日,加州大学洛杉矶分校的天文学家启动一项社区科学项目,其中公众志愿者将对无线电信号图像进行分类,并归类其潜在的干扰类型,以训练一个机器学习算法搜索从绿湾望远镜获取的SETI数据。


人工智能也有助于SETI流程的其它部分。Werthimer和他的同事利用机器学习对一项正在进行的SETI项目中的待观测恒星进行了排名。该项目使用了世界上最大的单口径望远镜,即中国的500米FAST射电望远镜。


然而,加州大学洛杉矶分校的天文学家Jean-Luc Margot说,SETI可能仍会继续同时使用经典方法和机器学习方法来分类数据。他说,经典算法在识别候选信号方面仍然表现出色,而机器学习“不是万用灵丹”。


Werthimer对此表示赞同:“机器干不了所有事,至少目前还不行。”

参考文献:

1.  Ma, P. X. et al. Nature Astron. https://doi.org/10.1038/s41550-022-01872-z (2023).


原文以Will an AI be the first to discover alien life?为标题发表在2023年3月15日《自然》的NEWS EXPLAINER版块上

© nature

doi: 10.1038/d41586-023-00258-z

版权声明:

本文由施普林格·自然上海办公室负责翻译。中文内容仅供参考,一切内容以英文原版为准。欢迎转发至朋友圈,如需转载,请邮件[email protected]。未经授权的翻译是侵权行为,版权方将保留追究法律责任的权利。


© 2023 Springer Nature Limited. All Rights Reserved



本文经授权转载自公众号“Nature Portfolio”
凡本公众号转载、引用的文章 、图片、音频、视频文件等资料的版权归版权所有人所有,因此产生相关后果,由版权所有人、原始发布者和内容提供者承担,如有侵权请联系删除。
点击【在看】,及时接收我们的内容更新 

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
芝大率先发榜:中国学生仅录取3人,但校方或扩大RD规模人工智能会取代硅谷裁掉的20万技术工人吗刘慈欣说:“如果遇到外星人,数学可能会是唯一的交流方式……” 这是真的吗?谷歌推出人工智能工具,发力靶标发现和数据分析,加速药物发现和精准医疗人工智能立法提上日程:兼顾安全与发展,为人工智能治理打下框架性基础秦淮区数字应用场景重磅发布!涉及智能交通/人工智能/元宇宙/智慧城市/智慧医疗/智慧文旅……美国民众目击外星生物报警:100%不是人类……盘点四大技术板块,洞察百项人工智能开源项目——InfoQ研究中心带你探秘中国人工智能开源领域李开复:未来几年,人工智能会革了所有人的命,除非你这么做未来生命研究所创始人Max Tegmark:人工智能更接近生命3.0T12的80%,小藤强州大的10%,余下学校的1%,大体上成为未来干部。西湖大学流体智能与信息化实验室人工智能+机器人方向博士后招聘2023,新消费的方向是什么?人工智能会对商业世界带来什么样的改变?|润米读书周,全场好书,限时5折冬日重叹温泉智能革命:人工智能、机器学习、生物 学习和智能材料的合力黄金和摩根大通,谁会率先崩盘?就连人工智能也建议暂时回避人工智能股票外星人入侵地球,你能幸存下来吗?新研究揭示:如果发生外星人攻击,最安全的地方是…阿里回应大分拆:为何此时启动?谁会率先独立上市?如何继续控制?疑点尚存的室温超导万一为真,就能点燃科技革命吗?上班调休,是我们的宿命吗?外星人降临?美国民众目击“外星生物”报警:两三米高、大眼睛大嘴巴,100%不是人类!美国普林斯顿大学,建筑博览木星的卫星上都有海洋了,那有外星生命吗?别急这就去看杉桧花粉飞,运载火箭坠新加坡的孩子,逃不过近视的宿命吗?至今尚未找到病因的阿尔茨海默病,能逆天改命吗?“Ta”来了,AI有生命吗?| 来点财经范儿初见惊鸿,ta是你的真命吗?| 灵魂匹配测试"有外星人在我后院!"——拉斯维加斯一家拨打911报警电话声称见到外星人!南澳散记 (增订本) :第二十六章:我的中文学生(上)王小川新注册人工智能公司「五季智能」,曾表示会下场做「中国OpenAI」丨最前线从千名专家呼吁暂停超强AI研发,到GPT-4老板直言AI可能会杀死人类!人工智能到底怎么了!吃很多,拉很多……这些“外星生物”养起来有多费劲?人工智能会带来人的普遍自由还是普遍弃民?
logo
联系我们隐私协议©2025 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。