Redian新闻
>
CVPR 2023 医学图像分割论文大盘点

CVPR 2023 医学图像分割论文大盘点

科技

点击下方卡片,关注“CVer”公众号

AI/CV重磅干货,第一时间送达

点击进入—>【医学图像分割】微信交流群

被催了很久,CVer 正式开启 CVPR 2023 论文大盘点系列Amusi 一共搜集了13篇医学图像分割论文这应该是目前各平台上最新最全面的CVPR 2023 医学图像分割盘点资料。其中半监督占据5篇!截止目前10篇论文的代码链接已放出(不代表已开源)!

如果你想知道最新、高质量的 AI 论文、实战项目、数据集还有入门综述和大量学习资料,欢迎加入CVer计算机视觉知识星球!每天不间断更新,希望对你有所帮助!扫描下方二维码,即可加入学习!


关于更多CVPR 2023的论文和开源代码,可见下面链接:

https://github.com/amusi/CVPR2023-Papers-with-Code


CVPR 2023 医学图像分割论文(13篇)


1. 无标记肝脏肿瘤分割

  • Label-Free Liver Tumor Segmentation

  • 单位:华中科大, 港中大(深圳), JHU, 南京医科大学第一附属医院

  • Paper: https://arxiv.org/abs/2303.14869

  • Code: https://github.com/MrGiovanni/SyntheticTumors

一句话总结:本文提出了一种合成肝脏肿瘤的有效策略,代码已开源!

2. DconnNet:基于定向连通性的医学图像分割

  • Directional Connectivity-based Segmentation of Medical Images

  • 单位:杜克大学

  • Paper: https://arxiv.org/abs/2304.00145

  • Code: https://github.com/Zyun-Y/DconnNet

一句话总结:DconnNet:一种用于医学图像分割的新型定向连通性建模网络,核心思想是从共享隐空间中分离出定向子空间,并使用提取的定向特征来增强整体数据表示,性能表现出色!优于nnU-Net等网络,代码已开源!

3. BCP:用于半监督医学图像分割的双向复制粘贴

  • Bidirectional Copy-Paste for Semi-Supervised Medical Image Segmentation

  • 单位:华东师范大学, 上海交通大学

  • Paper: https://arxiv.org/abs/2305.00673

  • Code: https://github.com/DeepMed-Lab-ECNU/BCP

一句话总结:本文提出了用于半监督医学图像分割的双向复制粘贴(BCP)方法,简单高效!可显著提升现有分割模型性能,如助力SS-Net网络涨点,代码已开源!

4. 真实世界医学图像分割和分布外定位的Mask Transformers 

  • Devil is in the Queries: Advancing Mask Transformers for Real-world Medical Image Segmentation and Out-of-Distribution Localization

  • 单位:阿里, 北大, 广东省人民医院, 盛京医院等

  • Paper: https://arxiv.org/abs/2304.00212

  • Code: None

一句话总结:据称,这是第一个探索医学图像分割中的近OOD检测和定位问题的工作,其中提出MaxQuery网络和QD loss,性能表现SOTA!

5. FedCE:基于客户端贡献估计的公平联邦医学图像分割

  • Fair Federated Medical Image Segmentation via Client Contribution Estimation

  • 单位:港中大, NVIDIA

  • Paper: https://arxiv.org/abs/2303.16520

  • Code: https://github.com/NVIDIA/NVFlare/tree/dev/research/fed-ce

一句话总结:FedCE:一种新的医学图像分割联邦学习方法,其使用客户端贡献估计作为全局模型聚合权重,在两个真实世界的医学数据集上进行实证评估,具有显著的性能改进、更好的协作公平性、更好的性能公平性。

6. 基于扩散模型的Ambiguous医学图像分割

  • Ambiguous Medical Image Segmentation using Diffusion Models

  • 单位:JHU, 不列颠哥伦比亚大学

  • Homepage: https://aimansnigdha.github.io/cimd/

  • Paper: https://arxiv.org/abs/2304.04745

  • Code: https://github.com/aimansnigdha/Ambiguous-Medical-Image-Segmentation-using-Diffusion-Models

一句话总结:在三种不同的医学图像模态(CT、超声和MRI)上验证了有效性,还提出一种新的指标来评估分割预测的多样性和准确性,这符合集体见解的临床实践,代码已开源!

7. 正交标注有利于Barely监督的医学图像分割

  • Orthogonal Annotation Benefits Barely-supervised Medical Image Segmentation

  • 单位:南京大学(史颖欢团队), 东南大学, 山东女子学院

  • Paper: https://arxiv.org/abs/2303.13090

  • Code: https://github.com/HengCai-NJU/DeSCO

一句话总结:本文提出一种用于3D医学图像分割的新注释方式:正交标注,即为一个volume标记两个正交切片,大大减轻了标注的负担,并提出DeSCO:密集稀疏联合训练范式,分割性能表现出色!

8. MagicNet:Magic-Cube分区和恢复的半监督多器官分割

  • MagicNet: Semi-Supervised Multi-Organ Segmentation via Magic-Cube Partition and Recovery

  • 单位:华东师范大学, 上海交大, 港大

  • Paper: https://arxiv.org/abs/2301.01767

  • Code: https://github.com/DeepMed-Lab-ECNU/MagicNet

一句话总结:在两个公共CT多器官数据集上证明了MagicNet的有效性,显著优于最先进的半监督医学图像分割方法,在具有10%标记图像的MACT数据集上DSC改进了+7%

9. MCF:用于半监督医学图像分割的互校正框架

  • MCF: Mutual Correction Framework for Semi-Supervised Medical Image Segmentation

  • 单位:重庆邮电大学

  • Paper: https://openaccess.thecvf.com/content/CVPR2023/html/Wang_MCF_Mutual_Correction_Framework_for_Semi-Supervised_Medical_Image_Segmentation_CVPR_2023_paper.html

  • Code: https://github.com/WYC-321/MCF

一句话总结:本文探讨了模型bias 校正的问题,并提出一种用于半监督医学图像分割的新框架:MCF,性能表现出色!

10. 重新思考小样本医学分割:一种矢量量化的角度

  • Rethinking Few-Shot Medical Segmentation: A Vector Quantization View

  • 单位:北京理工大学

  • Paper: https://openaccess.thecvf.com/content/CVPR2023/html/Huang_Rethinking_Few-Shot_Medical_Segmentation_A_Vector_Quantization_View_CVPR_2023_paper.html

  • Code: None

一句话总结:VQ框架在腹部、心脏和前列腺MRI数据集上产生了最先进的性能,并预计这项工作将引发对当前小样本医学分割模型设计的重新思考。

11. 用于半监督医学图像分割的伪标签引导的对比学习

  • Pseudo-label Guided Contrastive Learning for Semi-supervised Medical Image Segmentation

  • 单位:石溪大学

  • Paper: https://openaccess.thecvf.com/content/CVPR2023/html/Basak_Pseudo-Label_Guided_Contrastive_Learning_for_Semi-Supervised_Medical_Image_Segmentation_CVPR_2023_paper.html

  • Code: https://github.com/hritam-98/PatchCL-MedSeg

一句话总结:据作者称,这是首次尝试使用一致性正则化和伪标签在半监督环境中集成对比学习,用于半监督医学图像分割,性能表现出色,代码已开源!


12. SDC-UDA:跨模态医学图像分割的Volumetric无监督域自适应框架

  • SDC-UDA: Volumetric Unsupervised Domain Adaptation Framework for Slice-Direction Continuous Cross-Modality Medical Image Segmentation

  • 单位:延世大学, Naver AI Lab, 哈佛医学院等

  • Paper: https://arxiv.org/abs/2305.11012

  • Code: None

一句话总结:SDC-UDA:一种用于切片方向连续跨模态医学图像分割的新Volumetric 无监督域自适应框架,并在多个公共数据集上验证了其有效性,实现了最先进的分割性能。

13. DoNet:用于细胞学实例分割的深度去重叠网络

  • DoNet: Deep De-overlapping Network for Cytology Instance Segmentation

  • 单位:港科大, 腾讯 AI Lab

  • Paper: https://arxiv.org/abs/2303.14373

  • Code: https://github.com/DeepDoNet/DoNet

一句话总结:DoNet:一种用于细胞实例分割的基于分解和重组策略中去重叠网络,在ISBI2014和CPS数据集上性能表现SOTA!

如果你想知道最新、高质量的 AI 论文、实战项目、数据集还有入门综述和大量学习资料,欢迎加入CVer计算机视觉知识星球!每天不间断更新,希望对你有所帮助!扫描下方二维码,即可加入学习!


上面13篇医学图像分割论文和论文下载


CVer后台回复:CVPR2023即可下载论文和代码


医学图像和图像分割交流群成立


扫描下方二维码,或者添加微信:CVer333,即可添加CVer小助手微信,便可申请加入CVer-医学图像或者图像分割 微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer等。


一定要备注:研究方向+地点+学校/公司+昵称(如医学图像或者图像分割+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群


▲扫码或加微信号: CVer333,进交流群


CVer计算机视觉(知识星球)来了!想要了解最新最快最好的CV/DL/AI论文速递、优质实战项目、AI行业前沿、从入门到精通学习教程等资料,欢迎扫描下方二维码,加入CVer计算机视觉,已汇集数千人!


扫码进星球


▲点击上方卡片,关注CVer公众号

整理不易,请点赞和在看

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
比Meta「分割一切AI」更早实现交互式开集分割!港科大开放词表分割大法入选ICCV 2023Prompt一键抠图!Meta发布史上首个图像分割基础模型,开创CV新范式苹果、俄勒冈州立提出AutoFocusFormer: 摆脱传统栅格,采用自适应下采样的图像分割文曲星改善了界面国际要闻简报,轻松了解天下事(04炸裂!最新CVPR2023、ICML2023、AAAI2023、ACL2023论文+Code大合集!DeepLab、DeepLabv3、RefineNet、PSPNet…你都掌握了吗?一文总结图像分割必备经典模型(二)医学图像分割研究生,想放弃了怎么办?医学图像分割杀疯了!CVPR 2023 | 香港理工提出GrowSP:3D场景的无监督语义分割【附PDF】整理了114篇医疗论文,含cvpr2023医疗论文+经典论文+医疗论文综述等CVPR 2023 | 谷歌提出CLIPPO:仅从像素理解图像和语言卷爆CV!46篇分割一切模型(SAM)二创论文大盘点医学图像分割、MRI、病变检测……“AI+医疗”近期有哪些值得读的顶会论文?CVPR 2023 | 完全无监督的视频物体分割 RCF国际要闻简报,轻松了解天下事(04三贱P图露馅了CVPR 2023 | 浙大&南洋理工提出PADing:零样本通用分割框架希腊塞萨洛尼基(Thessaloniki),黎明阳光FCN、ReSeg、U-Net、ParseNet、DeepMask…你都掌握了吗?一文总结图像分割必备经典模型(一)CVPR 2023 | 华科&MSRA新作:基于CLIP的轻量级开放词汇语义分割架构港中文李教授:基于遥感图像的地理空间图像分类识别|收获一作论文与导师推荐信!CVPR 2023论文总结!CV最热领域颁给多模态、扩散模型CVPR'23 最佳论文候选 | 采样提速256倍!蒸馏扩散模型生成图像质量媲美教师模型三叶杜鹃花当AIGC遇到GAN和Diffusion,CVPR 2023论文大盘点今年 CV 热点这么多,不可错过 CVPR 2023 线下论文分享会ICCV 2023 | 比分割一切SAM更早实现交互式开集分割!港科大提出OpenSeeD:开放词表图像分割和检测2023 春假日本行CVPR 2023 | 多模态新任务和新数据集!NTU提出广义引用分割问题GRESAutoFocusFormer:摆脱传统栅格,采用自适应下采样的图像分割阿大提出:视听分割合成新数据集和声音图像分割新网络SAM分割一切最全论文大盘点CVPR 2023上的分割论文杀疯了!费城日本花园,樱花独放国际要闻简报,轻松了解天下事(04上海AI实验室联合团队获CVPR最佳论文奖 | CVPR 20232022&2023 Subaru Outback 和 2023 Honda CRV Hybrid二选一CVPR 2023 | RCF:完全无监督的视频物体分割PANet、DANet、FastFCN、OneFormer…你都掌握了吗?一文总结图像分割必备经典模型(三)
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。