CVPR 2023 | 完全无监督的视频物体分割 RCF
TLDR:视频分割一直是重标注的一个 task,这篇 CVPR 2023 文章研究了完全不需要标注的视频物体分割。仅使用 ResNet,RCF模型在 DAVIS16/STv2/FBMS59 上提升了 7/9/5%。文章里还提出了不需要标注的调参方法。代码已公开可用。
论文链接:
作者机构:
分割效果视频:
项目主页:
代码链接:
视频物体分割真的可以不需要人类监督吗?
视频分割一直是重标注的一个 task,可是要标出每一帧上的物体是非常耗时费力的。然而人类可以轻松地分割移动的物体,而不需要知道它们是什么类别。为什么呢?
Gestalt 定律尝试解释人类是怎么分割一个场景的,其中有一条定律叫做 Common Fate,即移动速度相同的物体属于同一类别。比如一个箱子从左边被拖到右边,箱子上的点是均匀运动的,人就会把这个部分给分割出来理解。然而人并不需要理解这是个箱子来做这个事情,而且就算是婴儿之前没有见过箱子也能知道这是一个物体。
运用Common Fate来分割视频
这个定律启发了基于运动的无监督分割。然而,Common Fate 并不是物体性质的可靠指标:关节可动(articulated)/可变形物体(deformable objects)的一些 part 可能不以相同速度移动,而物体的阴影/反射(shadows/reflections)始终随物体移动,但并非其组成部分。
举个例子,下面这个人的腿和身子的运动是不同的(Optical Flow 可视化出来颜色不同)。这很常见,毕竟人有关节嘛(articulated),要是这个处理不了的话,很多视频都不能分割了。然而很多 baseline 是处理不了这点的(例如 AMD+ 和 OCLR),他们把人分割成了几个部分。
还有就是影子和反射,比如上面这只天鹅,它的倒影跟它的运动是一致的(Optical Flow 可视化颜色一样),所以之前的方法认为天鹅跟倒影是一个物体。很多视频里是有这类现象的(毕竟大太阳下物体都有个影子嘛),如果这个处理不了的话,很多视频也不能分割了。
那怎么解决?放松。Relax.
长话短说,那我们的方法是怎么解决这个问题的呢?无监督学习的一个特性是利用神经网络自己内部的泛化和拟合能力进行学习。既然 Common Fate 有自己的问题,那么我们没有必要强制神经网络去拟合 Common Fate。于是我们提出了 Relaxed Common Fate,通过一个比较弱的学习方式让神经网络真正学到物体的特性而不是 noise。
具体来说,我们的方法认为物体运动由两部分组成:物体总体的 piecewise-constant motion (也就是 Common Fate)和物体内部的 segment motion。比如你看下图这个舞者,他全身的运动就可以被理解成 piecewise-constant motion 来建模,手部腿部这些运动就可以作为 residual motion 进行拟合,最后合并成一个完整的 flow,跟 RAFT 生成的 flow 进行比较来算 loss。我们用的 RAFT 是用合成数据(FlyingChairs 和 FlyingThings)进行训练的,不需要人工标注。
Relaxed Common Fate
这里的 Residual Flow 会尽量初始化得小一些,来鼓励先学 piecewise-constant 的部分(有点类似 ControlNet),再慢慢学习 residual 部分。
引入Appearance信息来帮助无监督视频分割
光是 Relaxed Common Fate 就能在 DAVIS 上相对 baseline 提 5%了,但这还不够。前面说 Relaxed Common Fate 的只用了 motion 而没有使用 appearance 信息。
让我们再次回到上面这个例子。这个舞者的手和身子是一个颜色,然而 AMD+ 直接把舞者的手忽略了。下面这只天鹅和倒影明明在 appearance 上差别这么大,却在 motion 上没什么差别。如果整合 appearance 和 motion,是不是能提升分割质量呢?
因此我们引入了 Appearance 来进行进一步的监督。在学习完 motion 信息之后,我们直接把取得的 Mask 进行两步优化:一个是 low-level 的 CRF refinement,强调颜色等细节一致的地方应该属于同一个 mask(或背景),一个是 semantic constraint,强调 Unsupervised Feature 一直的地方应该属于同一个 mask。
把优化完的 mask 再和原 mask 进行比较,计算 L2 Loss,再更新神经网络。这样训练的模型的无监督分割能力可以进一步提升。具体细节欢迎阅读原文。
无监督调参
很多无监督方法都需要使用有标注的数据集来调参,而我们的方法提出可以利用前面说的 motion 和 appearance 的一致性来进行调参。简单地说,motion 学习出的 mask 在 appearance 上不一致代表这个参数可能不是最优的。具体方法是在 Unsupervised Feature 上计算 Normalized Cuts (但是不用算出最优值),Normalized Cuts 越小越代表分割效果好。原文里面对此有详细描述。
方法效果
无论是否有 Post-processing,我们的方法在三个视频分割数据集上都有很大提升,在 STv2 上更是提升了 12%。
Ablation 可以看出 Residual pathway (Relaxed Common Fate)的贡献是最大的,其他部分总计贡献了 11.9% 的增长。
Visualizations
总结
这篇 CVPR 2023 文章研究了完全不需要标注的视频物体分割。通过 Relaxed Common Fate 来利用 motion 信息,再通过改进和利用 appearance 信息来进一步优化,RCF 模型在 DAVIS16/STv2/FBMS59 上提升了 7/9/5%。文章里还提出了不需要标注的调参方法。代码和模型已公开可用。
更多阅读
#投 稿 通 道#
让你的文字被更多人看到
如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。
总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。
PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析、科研心得或竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。
📝 稿件基本要求:
• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注
• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题
• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算
📬 投稿通道:
• 投稿邮箱:[email protected]
• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者
• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿
△长按添加PaperWeekly小编
🔍
现在,在「知乎」也能找到我们了
进入知乎首页搜索「PaperWeekly」
点击「关注」订阅我们的专栏吧
微信扫码关注该文公众号作者