Redian新闻
>
全球掀复现「室温常压超导体」热潮,中国队已肝十几小时,韩国团队却内讧了

全球掀复现「室温常压超导体」热潮,中国队已肝十几小时,韩国团队却内讧了

公众号新闻
鱼羊 尚恩 发自 凹非寺
量子位 | 公众号 QbitAI

室温常压超导,这回是真的闹大了。

不止是在国内连上热搜,火速出圈引爆大众讨论。

铅磷灰石价格也在24小时之内迅速被炒了起来。

而物理界的科学家们,更是第一时间拉开了一场全球复现行动

知乎上,就有答主透露,一个来自安徽的实验团队已经爆肝搞了十几个小时,正在努力复现结果。

瞬间引发的关注量之大,连国外友人都被吸引了过来。

有意思的是,因为论文中合成步骤看上去并不复杂,还真有国外网友准备“手搓超导体”,连夜采购了一波原材料。

这位本职为航天公司工程师的大哥透露:今晚实验就开整!2-3天看结果。

连OpenAI联合创始人Andrej Karpathy也被吸引过来,前排点赞围观。

这一波,可真是把大模型的风头都给盖过去了。

全球开动复现实验

这次韩国团队的研究之所以会掀起如此“复现热潮”,用网友的话来说就是太简单了:

简单到高中实验室就能复现(若论文为真)。

而在arXiv上被热议的两篇论文中,有一篇就针对如何制备LK-99超导体给出了详细的流程。

大致分为三个大步骤:

  • 合成黄铅矿Pb₂(SO₄)O

  • 合成磷化亚铜晶体Cu₃P

  • 生成常温常压超导体Pb(10-x)Cux(PO4)6O

若是按照这个方法,有网友就估算:

在材料和设备齐全的情况下,最少仅需34小时就可以合成出LK-99材料。

(国内外“选手”纷纷加班加点,似乎想要争做“复现第一人”

例如国内玩家这边,一个名为“半导体与物理”的网友开始实验直播,还顺便把实验步骤一一都放了出来。

这就是我们在上文提及的“安徽小分队”,他们从7月26日开始熬夜搞,帖子发布后立即引起大量网友吃瓜围观。

下面是这位网友分享的实验步骤。

第一步,准备合成Cu₃P,将铜和磷粉末按照比例在坩埚中混合。

第二步,压片Cu₃P。

第三步,将混合粉末密封在每克20cm的密封管中,然后用真空泵抽至绝对压强为10-3torr(约等于0.13Pa),抽真空后封管。

最后,放进马弗炉烧制,一共需要烧制3天左右。

合成黄铅矿后,还需要合成磷化亚铜晶体,进而才能生成论文里说的“常温常压超导体”。

而就在马上能见分晓的时候,这个复现实验的帖子被悄悄删除了。此举也引来不少网友吃瓜,知乎上甚至有专门话题讨论起来。

对此就有网友分析认为,很大可能是纪律问题,一般实验室都会对保密有所要求。

虽然热帖没了,但还是有很多网友以身试法,表示自己也在搞复现。

这不,B站科普区知名up主“真·凤舞九天”就喊话已经在着手准备了!并表示,会给大家拍个实验全流程。

另外一边,海外“选手”也马不停蹄的开始实验,实时在网上直播整个实验进展,还专门给实验搞了个话题:

MeissnerEffectOrBust。

不过他是个业余爱好者,刚刚开始准备基础设备,速度应该不如专业实验室的快。

比如,第一天这位老哥除了准备基础设施,就在等PbO和Pb(SO)的到货。

一天半,东西基本到货了,CuP还在发货中,估计本周五或周一到。

最新进展是,老哥的团队今晚会把PbO + Pb(SO₄)放入炉中烧制。

在更新进展同时,他还指出,现在多数关于烧制PbO + Pb(SO₄)方法的论文,都是在不带盖的容器进行,但韩国团队是在真空状态下操作的。

所以,团队会在“真空和开放”两种环境下都试试,看看效果。

总而言之,这次“复现热潮”归根结底还是两个字,简单。

而且不同于此前Dias团队那一波研究,韩国团队是把流程和证据都给了出来。

想要更深入了解相关研究,可以戳《首个室温常压超导体》了解一下。

不过在一派热火朝天中,也有人呼吁冷静。

比如OpenAI CEO奥特曼:

我很想相信,但我们是不是对抗磁铁过于兴奋了。

南京大学教授、美国物理学会会士闻海虎有类似的观点。他对南方都市报表示,“视频显示的磁悬浮应该是一种弱抗磁效应所致,与超导磁悬浮有明显区别。所以,我的判断是似是而非的假超导现象”。

One More Thing

具体结果,还是得等子弹飞一会儿。

不过此事热度之大,倒是先把花边新闻给拱了出来。

有网友发现,这个船新室温超导材料的研究团队,同时在arXiv上传了两篇论文:一篇列有6位作者,而另一篇只有3位。

并且3位作者这篇,标题是《首个室温常压超导体》。

诺贝尔奖最多由三人分享。

还有网友八卦出了更多细节:

这项研究的两位主要作者李硕培(Sukbae Lee)和金智勋(Jihoon Kim),自1999年以来就在陆陆续续研究LK-99这种材料。

2018年,李和金拿到了外界投资,“2+1”这篇论文中的另一位作者权永万(Young-Wan Kwon)也因此加入了他们的研究。

而“2+4”论文中的金贤泰(Hyun-Tak Kim),是美国威廉玛丽学院的物理学教授。这位万引大佬,是李和金在开始写论文时,拉过来合作压阵的。

一篇韩国报道显示,在2020年时,李硕培就向Nature提交过他们的成果,但时值另一位神人Ranga Dias搞出了大争议,Nature就婉拒了他们。作者团队决定先在其他期刊上发表这篇论文。

于是抓马就来了。按照金贤泰自己的说法,《首个室温常压超导体》这篇论文,没有经过他的允许就被传到了arXiv上。

并且这篇论文,是不带金贤泰等人的名字的。

第二篇论文随即在几个小时后,也被传到了arXiv上。这一回被“除名”的,是权永万。

正如英伟达AI科学家Jim Fan所说,这事儿发展到现在,有发现的兴奋,有被抢发的恐惧,有肾上腺激增的时刻,也不乏人与人之间的抓马。

总之,因崔斯汀。

参考链接:
[1]https://twitter.com/8teAPi/status/1684385895565365248/
[2]https://n.news.naver.com/article/366/0000920152/
[3]https://m.mp.oeeee.com/a/BAAFRD000020230727824049.html/

「AIGC时代的算力基石」沙龙筹备中

8月9日,量子位将在北京线下举办行业沙龙「AIGC时代的算力基石」,诚邀算力产业相关企业报名参与~ 

点击图片了解招募详情,企业报名可联系活动负责人微信iris_wang17,备注企业-姓名。


点这里👇关注我,记得标星哦~

一键三连「分享」、「点赞」和「在看」

科技前沿进展日日相见 ~ 

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
常温常压超导首被证明理论可行:美顶尖实验室论文出炉大众 7 亿美元入股小鹏,合作 2 款纯电车;妙鸭相机遭上海消保委点名;韩国学者发现首个「室温常压超导体」 | 极客早知道韩国室温常压超导,革命还是胡闹?峰回路转?美国院士称初步复现Dias团队的近常压室温超导研究美国院士称初步复现室温超导成果,南大闻海虎团队回应:论文有三点破绽,镥-氢-氮中近常压室温超导的证据还远远不足刚刚,常温常压超导首被证明理论可行:美顶尖实验室论文出炉「常温常压超导体」被曝实验意外:石英管裂开后才制备出来,华科UP主:初步验证未成功大消息!韩国科学家称造出世界首个室温常压超导材料!127°C可实现超导,又颠覆物理学?重磅!常温常压超导首被证明理论可行:美顶尖实验室论文出炉有待验证!科学家宣称造出室温常压超导体 若为真将改变人类文明初步结果:无超导,弱抗磁。东南大学教授复现「常温常压超导」全流程来了!独家!韩国“全球首个室温超导体”科学家团队成员:1个月内或可复制室温超导LK-99Eden Might Have Magnolia韩国造出「世界首个室温超导体」?127度即可实现超导马斯克强夺推特账号x,Key社成为腾讯子公司,恒大汽车两年亏损840亿元,协作者回应首个室温常压超导,这就是今天的其他大新闻!东南大学教授复现「常温常压超导」全流程来了!初步结果:无超导,弱抗磁中国团队初步复现韩国室温超导材料?实验视频B站爆火:播放量超430万室温超导又是乌龙?韩国团队要求“下架”!国内有团队称已复现,A股概念股“暴涨了再说”2023亚太IoT支出约2万亿涨11%;Arm9月IPO估值600亿美金;郭明錤关注常温常压超导体 | AIoT情报「首个室温常压超导体」!127度以下常压都能实现超导,有原子结构有视频,网友:里…里程碑式成果?LK-99:第一种室温常压超导体?发改委提出优化汽车购买使用管理,专家质疑首个室温常压超导,推特成功更名X,传下代iPhone缩窄边框,这就是今天的其他大新闻!韩国科学家宣称制造出首个室温常压超导体,材料已申请专利 | 环球科学要闻解构具有永恒魅力的经典沙拉——华尔道夫沙拉【图文视频】5.29.23 月光照在河面上刚刚,常温常压超导首被证明【理论】可行:美顶尖实验室论文出炉!“室温超导”科学家为新的常压、室温超导体申请专利;阿斯巴甜7月或将被列为可能致癌物 | 环球科学要闻协作者回应「首个室温常压超导体」:内容有缺陷行字念行不念行7人分诺奖,韩国室温超导团队内讧?不期然又遇见当年的自己-:)直播复现室温超导,万人围观人气爆棚!韩国团队回应:数据存在问题,但并非造假韩国造出世界首个室温超导体?127度实现超导,复现即锁定诺奖首个室温常压超导掀全球热度,数万人正在围观这个中国团队的复现进度​北大团队确认:韩国团队的LK-99不是室温超导体!美国研究人员:是劣质材料,电阻非常高
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。