Redian新闻
>
给芯片“续命”的一台机器

给芯片“续命”的一台机器

公众号新闻

来源:内容由半导体行业观察(ID:icbank)编译自IEEE,谢谢。


在过去的半个世纪中,我们开始将摩尔定律(即给定硅面积中的晶体管数量大约每两年翻一番,推动计算向前发展)视为刚刚发生的事情,就好像它是自然发生的一样。一个自然的、不可避免的过程,类似于进化或衰老。当然,现实却大不相同。跟上摩尔定律的步伐需要花费几乎难以想象的时间、精力和人类的聪明才智——跨越多个大陆的数千人以及地球上一些最复杂的机器的无尽土地。


也许这些机器中最重要的是执行是极紫外(EUV)光刻。EUV 光刻是数十年研发的产物,现已成为过去两代尖端芯片背后的驱动技术,在过去三年中用于每一款高端智能手机、平板电脑、笔记本电脑和服务器。然而摩尔定律必须继续前进,芯片制造商继续推进他们的路线图,这意味着他们需要进一步缩小设备的几何尺寸。


因此,在 ASML,我(指代本文作者JAN VAN SCHOOT,下同)和我的同事正在开发下一代光刻技术。它被称为高数值孔径 EUV 光刻,涉及对系统内部光学器件的重大检修。高数值孔径 EUV 将于 2025 年投入商业使用,芯片制造商将依靠其能力在本十年末保持其承诺的进步。


光刻的3个因素


摩尔定律依赖于提高光刻分辨率,以便芯片制造商可以铺设越来越精细的电路。在过去 35 年里,工程师们通过综合研究以下三个因素,将分辨率降低了两个数量级:光的波长;k 1,封装过程相关因素的系数;数值孔径 (NA),衡量系统发光角度范围的指标。

临界尺寸(即使用某种光刻曝光工具可以打印的最小特征尺寸)与光的波长除以光学器件的数值孔径成正比。因此,您可以通过使用较短的光波长或较大的数值孔径或两者的组合来实现更小的临界尺寸。例如,通过改进制造过程控制,可以将k 1值推至尽可能接近其物理下限0.25。


一般来说,提高分辨率的最经济的方法是增加数值孔径并改进工具和工艺控制以实现更小的 k 1。只有当芯片制造商没有办法进一步提高 NA 和 k 1时,他们才会采取减小光源波长的方法。


然而,业界不得不多次改变波长。波长的历史进程从使用汞灯产生的 365 纳米,到 20 世纪 90 年代末通过氟化氪激光器产生的 248 纳米,然后在 20 世纪 90 年代初期,通过氟化氩激光器产生的 193 纳米。对于每一代波长,光刻系统的数值孔径都在逐渐增加,然后工业界才转向更短的波长。


例如,随着 193 nm 的使用即将结束,引入了一种增加 NA 的新方法:浸没式光刻。通过在透镜底部和晶圆之间放置水,NA 可以从 0.93 显着增大到 1.35。自 2006 年左右推出以来,193 纳米浸没式光刻技术一直是尖端光刻技术的行业主力。


在过去四十年中,光刻技术的分辨率提高了约 10,000 倍。这在一定程度上是由于使用了越来越小的光波长,但它也需要更大的数值孔径和改进的处理技术。


EUV 的黎明


但随着打印小于 30 nm 的特征的需求增加,并且由于 193 nm 光刻的 NA 已达到极限,遵循摩尔定律变得越来越复杂。要创建小于 30 nm 的特征,需要使用多个图案来生产单层芯片特征(这在技术和经济上都是一项繁琐的技术),或者需要改变波长。我们花了 20 多年的时间和无与伦比的开发努力才将下一个新波长上线:13.5 纳米 EUV。


EUV 需要一种全新的发光方式。这是一个非常复杂的过程,需要使用强大的CO 2激光撞击飞行中的熔融锡滴,然后将锡蒸发成等离子体,发射出光子能量光谱。EUV 光学器件从该光谱中获取所需的 13.5 nm 波长,并将其引导通过一系列镜子,然后从图案掩模反射,将该图案投影到晶圆上。所有这些都必须在超净真空中完成,因为 13.5 nm 波长会被空气吸收。(在前几代光刻技术中,光线通过掩模将图案投射到晶圆上。但 EUV 很容易被吸收,因此掩模和其他光学器件必须是反射性的。)


在真空室中,EUV 光 [紫色] 在从光掩模 [顶部中心] 反射之前经过多个镜子反射。从那里,光继续它的旅程,直到它被投射到带有光掩模图案的晶圆上[底部中心]。插图显示了当今数值孔径为 0.33 的商业系统。NA 为 0.55 的未来系统中的光学器件将会有所不同。


从 193 纳米光转向 EUV 在一定程度上降低了临界尺寸。一种称为“制造设计”的过程,涉及设置电路块的设计规则以利用光刻的限制,在降低 k 1方面发挥了很大作用 。现在是时候再次提高数值孔径了,从现在的 0.33 提高到 0.55。


让高数值孔径 EUV 发挥作用


将 NA 从今天的 0.33 增加到目标值 0.55 不可避免地需要进行一系列其他调整。EUV 光刻等投影系统在晶圆和掩模处都有 NA。当您增加晶圆上的 NA 时,也会增加掩模上的 NA。因此,在掩模处,入射和出射的光锥变得更大,并且必须彼此成一定角度以避免重叠。重叠的光锥会产生不对称的衍射图案,从而导致令人不快的成像效果。


但这个角度是有限制的。由于 EUV 光刻所需的反射掩模实际上是由多层材料制成的,因此无法确保在特定反射角度以上获得适当的反射。EUV掩模的最大反射角为11度。还有其他挑战,但反射角度是最大的。


如果 EUV 光以太陡的角度照射光掩模,它将无法正确反射


当今 EUV 中掩模处的反射角已达到极限 [左] 增加 EUV 的数值孔径将导致反射角过宽 [中]。因此,高数值孔径 EUV 使用变形光学器件,该光学器件允许角度仅在一个方向上增加 [右]。以这种方式成像的场是一半大小,因此掩模上的图案必须在一个方向上扭曲,但这足以维持通过机器的吞吐量。


克服这一挑战的唯一方法是提高称为缩小的质量(The only way to overcome this challenge is to increase a quality called demagnification)。缩小就像它听起来的那样——从掩模上获取反射图案并将其缩小。为了补偿反射角问题,我和我的同事必须将缩小倍率加倍至 8 倍。因此,晶圆上掩模的成像部分将小得多。这种较小的像场意味着需要更长的时间才能产生完整的芯片图案。事实上,这一要求会将我们的高数值孔径扫描仪的吞吐量降低到每小时 100 个晶圆以下,这一生产率水平将使芯片制造变得不经济。


值得庆幸的是,我们发现只需要在一个方向上增加缩小倍数(demagnification),即发生最大反射角的方向。另一个方向的缩小率可以保持不变。这使得晶圆上的场尺寸可接受,约为当今 EUV 系统中使用的尺寸的一半,即 26 x 16.5 毫米,而不是 26 x 33 毫米。这种方向相关的或变形的缩小构成了我们高数值孔径系统的基础。光学器件制造商卡尔蔡司付出了巨大的努力来设计和制造符合我们新机器所需规格的变形镜头。


为了确保半尺寸场具有相同的生产率水平,我们必须重新开发系统的掩模版和晶圆台(分别固定掩模和晶圆的平台),并在扫描过程中使它们彼此同步移动。重新设计产生了纳米级精度的平台,加速度提高了四倍。


高数值孔径 EUV 将于 2025 年投产


第一个高数值孔径 EUV 系统 ASML EXE:5000 将安装在我们与比利时纳米电子研究机构 Imec 于 2024 年初联合开设的新实验室中。该实验室将允许客户、掩模制造商、光刻胶供应商和其他公司开发使高数值孔径 EUV 成为现实所需的基础设施。


我们必须使其成为现实,因为高数值孔径 EUV 是维持摩尔定律的关键组成部分。不过,达到 0.55 NA 并不是最后一步。从那时起,ASML、蔡司和整个半导体生态系统将以我们难以想象的方式进一步向更好、更快和创新的技术延伸。


👇👇 点击文末【阅读原文】,可查看原文链接!

*免责声明:本文由作者原创。文章内容系作者个人观点,半导体行业观察转载仅为了传达一种不同的观点,不代表半导体行业观察对该观点赞同或支持,如果有任何异议,欢迎联系半导体行业观察。


今天是《半导体行业观察》为您分享的第3483期内容,欢迎关注。

推荐阅读


重磅,PCIe将走向光互联,铜将被抛弃?

韩国存储双雄,再次领先!

苹果下一颗自研芯片,会是它吗?


半导体行业观察

半导体第一垂直媒体

实时 专业 原创 深度


识别二维码,回复下方关键词,阅读更多

晶圆|集成电路|设备|汽车芯片|存储|台积电|AI|封装

回复 投稿,看《如何成为“半导体行业观察”的一员 》

回复 搜索,还能轻松找到其他你感兴趣的文章!

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
AI芯片“顶流”聚会,终极议程出炉!下周四深圳见咖啡不仅是“续命水”还是“快乐水”,此话怎讲?苹果研发芯片“出师不利” 和高通续签供应协议芯片“刺客”冒头,万亿英伟达还能狂飙多久?智能座舱芯片“三国杀”:联发科牵手英伟达对抗高通麦内尼乌斯:促成平民保民官设立的协调人美国芯片“护栏”正式发布:限制受补贴者投资中国AI Agent+to B,下一个入口级平台机会|甲子光年[视听] 爆款迷你台机乂度XD05 Bal CP版上手,终成六边形战士英国雇主必看:工签牌照也要“续签”?移民局会突击检查,不合规被吊销!教你如何应对!这台机器,想抱起四千万失能老人[视听] 聆听台机才有的温润与宽松!自带电池的便携解码耳放草医YIAO上手中国经济发展新动能(3):动力电池高质量“续航”华为“天才少年”稚晖君离职半年,做出了一台机器人“续命” 4 年,红帽宣布延长 RHEL 7 扩展生命周期台积电创始人:美对中国芯片“卡喉咙”,大陆自会找到反击方法美科技巨头将最新AI芯片“带到中国”$150/桶!Costco在澳销售“续命商品”!网友:买大米更好(图)环游世界的北非蛋这哪是咖啡,简直就是上班人的“续命神器”啊!今日财经| 高通称“撤离上海”说法夸大其词;余承东任华为车BU董事长;Windows AI时代来了;蔚来官宣首款自研芯片“杨戬”这哪是咖啡,简直就是医护人员的“续命神器”啊又有六台机组获批,中国连续五年上马核电项目中东资本助力,恒大汽车“续命”聊一款“续航进步明显”的笔记本5085 血壮山河之武汉会战 黄广战役 17中国首款商用可重构5G射频芯片“破风”而来搭上中东土豪,蔚来成功“续命”无锡给芯片企业发钱了!顶尖芯片人才团队最高奖1亿,要补贴全产业链$23块就能买一台奔驰!?还是一台无价之宝……剑指芯片“内存墙”,三星投资了一家光互连公司南加ATM大盗落网 至少偷走29台机器四十一 惊雷四十二 传说人形机器人成新风口!探馆世界机器人大会:"机器人+制造业"国产替代加速
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。