Redian新闻
>
DeepMind 全新 AI 项目曝光:可控制各类机器人,数据集有望开源

DeepMind 全新 AI 项目曝光:可控制各类机器人,数据集有望开源

公众号新闻


作者|Ben Dickson  

译者|核子可乐、冬梅

DeepMind 的新项目是什么?

开发机器人技术的一大挑战,就在于必须投入大量精力来为每台机器人、每项任务和每种环境训练机器学习模型。近日,谷歌 DeepMind 团队及其他 33 个研究机构正共同发起新项目,旨在创建一套通用 AI 系统来应对这个挑战。据称该系统能够与不同类型的物理机器人协同运作,成功执行多种任务。

谷歌机器人部门高级软件工程师 Pannag Sanketi 在采访中表示,“我们观察到,机器人在专项领域表现极佳,但在通用领域却缺乏灵性。一般来讲,大家需要为每项任务、每台机器人和每种环境分别训练一套模型,从零开始调整每一个变量。”

为了克服这个问题,让机器人的训练和部署变得更加轻松、快捷,谷歌 DeepMind 在名为 Open X-Embodiment 的大型共享数据库项目中引入了两大关键组件:一套包含了 22 种机器人类型数据的数据集,外加一系列能够跨多种任务进行技能迁移的模型 RT-1-X(这是一个源自 RT-1 的机器人变压器模型)。为了开发 Open X-Embodiment 数据集,研发人员在超过 100 万个场景中展示了 500 多种技能和 150,000 项任务,因此,该数据集也是同类中最全面的机器人数据集。

此外,研究人员还在机器人实验室和不同类型的物理装置之上对模型进行了测试,并发现与传统机器人训练方法相比,新方案确实能取得更好的成绩。

来自 Open X-Embodiment 数据集的样本展示了 500 多种技能和 150,000 项任务。

Open X-Embodiment 数据集结合了跨实施例、数据集和技能的数据。

结合机器人数据

通常来讲,不同类型的机器人往往拥有独特的传感器和执行器,所以需要配合专门的软件模型。这就类似于不同生物体的大脑和神经系统需要专门进化,从而适应该生物的身体结构与所处环境。

但 Open X-Embodiment 的诞生却出于这样一条先验性的假设:将来自不同机器人和任务的数据结合起来,就能创建一套优于专用模型的通用模型,足以驱动所有类型的机器人。这个概念在一定程度上受到大语言模型(LLM)的启发,即在使用大型通用数据集进行训练时,模型成果的匹配度甚至可以优于在特定数据集上训练的小型针对性模型。而研究人员惊喜地发现,此项原理果然也适用于机器人领域。

为了创建 Open X-Embodiment 数据集,研究团队收集了来自不同国家 20 个机构的 22 台机器人具身的真实数据。该数据集包含超 100 万种情节(所谓情节,是指机器人每次尝试执行任务时所采取的一系列动作),其中具体涉及 500 多种技能和 15 万个任务示例。

随附的各模型均基于 Transformer,一套在大语言模型中也得以应用的深度学习架构。RT-1-X 建立在 Robotics Transformer 1(简称 RT-1)之上,是一套适用于在真实环境下实现机器人技术规模化的多任务模型。RT-2-X 则建立在 RT-1 后继者 RT-2 的基础之上——RT-2 是一种视觉语言动作(VLA)模型,能够从机器人和网络数据中学习,并具备响应自然语言命令的能力。

研究人员在五所不同研究实验室的五台常用机器人上测试了 RT-1-X 对各类任务的执行能力。与针对这些机器人开发的专用模型相比,RT-1-X 在拾取和移动物体、以及开门等任务上的成功率高出 50%。该模型还能将技能迁移至多种不同环境,这也是在特定视觉场景下训练出的专用模型所做不到的。由此可见,由不同示例集训练而成的模型在大多数任务中都优于专用模型。论文还提到,此模型适用于从机械手臂到四足动物在内的多种机器人。

加州大学伯克利分校副教授、论文联合作者 Sergey Levine 写道,“对于任何曾有机器人研究经验的朋友来说,都能意识到这是多么了不起:这类模型「从来」就没能第一次就尝试成功,但这个模型却做到了。”

值得注意的是,即使是规模较小的 RT-1-X 模型,也实现了对各实验室内部专用模型的超越!对于任何曾有机器人研究经验的朋友来说,都能意识到这是多么了不起:这类模型“从来”就没能第一次就尝试成功,但这个模型却做到了。

在应急技能和处理训练数据集中未涉及的新任务方面,RT-2-X 的成功率可达 RT-2 的 3 倍。具体来讲,RT-2-X 在需要空间认知的任务上表现出更好的性能,例如理解“将苹果放到布旁边”和“将苹果放到布上”两种要求间的区别。

研究人员在 Open X 和 RT-X 的发布博文中写道,“我们的结果表明,与其他平台的数据进行联合训练之后,RT-2-X 获得了原始数据集中并不具备的额外技能,使其能够执行前所未见的新任务。”

步步迈向机器人研究的新未来

展望未来,科学家们正在考虑将这些进展与 DeepMind 开发的自我改进模型 RoboCat 的见解相结合,希望探索出新的研究方向。RoboCat 能够学会在不同机械臂上执行各种任务,然后自动设计出新的训练数据以提高自身性能。

Sanketi 认为,另一个潜在的研究方向,也可能是进一步研究不同数据集间的混合会如何影响跨机器人具身的能力泛化与改进效果。

该团队目前已经开源了 Open X-Embodiment 数据集和小型 RT-1-X 模型,但并未公开 RT-2-X 模型。

Sanketi 总结道,“我们相信,这些工具将改变机器人的训练方式,并加速该领域的研究进展。我们希望开源相关数据,并提供安全但受限的模型以减少障碍、加速研究。机器人技术的未来离不开机器人之间的相互学习,而这一切的前提,首先要求研究人员之间能够相互学习。”

参考链接:

https://venturebeat.com/ai/deepminds-remarkable-new-ai-controls-robots-of-all-kinds/

https://www.deepmind.com/blog/scaling-up-learning-across-many-different-robot-types

 活动推荐

FCon 全球金融科技大会将于 11 月在上海开幕,会议聚焦当前金融行业遇到的问题,围绕金融企业在数字化转型过程中的痛点,例如数据治理,智能化、数字化风控,数字化投研,数字化营销,IT 技术能力等方向进行深入交流,扫码或点击「阅读原文」可查看全部演讲专题。

前 100 人可享 5 折特惠购票,席位有限,先到先得!咨询购票请联系:17310043226(微信同手机号)。

今日荐文

我,技术不过硬,但是团队里的重要“胶水”

一小时12元,我在北欧监狱里训练AI

未来的人工智能语言,是 Rust 还是 Mojo ?

高效能不等于开发快,大模型时代如何正确提升研发效能?

不要沦为大模型应用的“炮灰”

华为中秋节给员工发Mate60手机;商汤科技回应原知产总监被立案侦查;马斯克平均年终奖33亿元 | AI一周资讯

你也「在看」吗? 👇

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
LLM准确率飙升27%!谷歌DeepMind提出全新「后退一步」提示技术LLaMA都在用的开源数据集惨遭下架:包含近20万本书,对标OpenAI数据集ChatGPT狂吐训练数据!还带个人信息!DeepMind发现大bug引争议。。。他刚在我们去的冰川失踪去世了红色日记 7.1-10Transformer+强化学习,DeepMind让大模型成为机器人感知世界的大脑《天凉好个秋》&《江南烟雨路》成功预测90%错义突变,DeepMind团队开发新AI模型AlphaMissense,有望解决人类遗传疾病的最大挑战谷歌DeepMind力证:GPT-4终局是人类智慧总和!Transformer模型无法超越训练数据进行泛化不用LLM,遗传编程可控Python代码!谷歌DeepMind等提出全新ARZ框架|IROS 2023ChatGPT狂吐训练数据,还带个人信息:DeepMind发现大bug引争议「字少信息量大」,Salesforce、MIT 研究者手把手教 GPT-4「改稿」,数据集已开源新能源汽车,智能房车,宠物机器人,扫地机器人…各种新鲜的高科技智造,9月15日,澳中博览会让你大开眼界!持续数据开源,智源发布超3亿对面向中英文语义向量模型训练数据集596页!医药深度:多因素共振,2024年有望开启医药牛市【东吴医药朱国广团队】性能直追GPT-4,5000个H100训成!DeepMind联创发全新一代大模型谷歌DeepMind全新AI天气预报神器GraphCast登上Science!1分钟预测10天全球天气,碾压行业SOTA!Transformer+强化学习,谷歌DeepMind让大模型成为机器人感知世界的大脑Google DeepMind 宣布基于 LLM 的机器人控制器 RT-2LLM准确率飙升27%!DeepMind提出全新「后退一步」Prompt技术鹧鸪天 中国高考招生乱象1分钟预测10天全球天气!谷歌DeepMind全新AI天气预报登上Science,碾压行业SOTA机器人瓦力来了!迪士尼亮出新机器人,用RL学习走路,还能进行社交互动DeepMusic刘晓光:用AI做音乐,我见到了儿时偶像周杰伦 | OMEGA访谈录DeepMind大模型登Science:1分钟预测10天天气数据,90%指标超越人类最强模型双重国籍的退休生活机器人研究迎来ImageNet时刻:一个数据集,让DeepMind具身智能大模型突飞猛进[9月26日]科学历史上的今天——金·赫尔尼(Jean Amédée Hoerni)DeepMind指出「Transformer无法超出预训练数据实现泛化」,但有人投来质疑冲击100美元?原油有望开启新一轮涨势机器人迎来ImageNet时刻!谷歌等新作Open X-Embodiment:机器人学习数据集和 RT-X 模型谷歌DeepMind力证:Transformer模型无法超越训练数据进行泛化!GPT-4终局是人类智慧总和!AIGC日报丨TikTok推AIGC内容打标功能,不标记内容将被删;DeepMind新AI模型有望解决人类遗传学难题人形机器人成新风口!探馆世界机器人大会:"机器人+制造业"国产替代加速Cell|双管齐下靶向SWI/SNF和EP400可有效抑制癌细胞生长,有望开发出更好的癌症疗法
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。