Redian新闻
>
图文并茂,HashMap 这篇写得太好了!!

图文并茂,HashMap 这篇写得太好了!!

公众号新闻

什么是HashMap?

HashMap是基于哈希表的Map接口的非同步实现。此实现提供所有可选的映射操作,并允许使用null值和null键。此类不保证映射的顺序,特别是它不保证该顺序恒久不变。

HashMap的数据结构

在Java编程语言中,最基本的结构就是两种,一个是数组,另外一个是模拟指针(引用),所有的数据结构都可以用这两个基本结构来构造的,HashMap也不例外。HashMap实际上是一个“链表散列”的数据结构,即数组和链表的结合体。

文字描述永远要配上图才能更好的讲解数据结构,HashMap的结构图如下。

从上图中可以看出,HashMap底层就是一个数组结构,数组中的每一项又是一个链表或者红黑树。当新建一个HashMap的时候,就会初始化一个数组。

下面先通过大概看下HashMap的核心成员。

public class HashMap<K,V> extends AbstractMap<K,V>
    implements Map<K,V>, Cloneable, Serializable {

    // 默认容量,默认为16,必须是2的幂
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;

    // 最大容量,值是2^30
    static final int MAXIMUM_CAPACITY = 1 << 30

    // 装载因子,默认的装载因子是0.75
    static final float DEFAULT_LOAD_FACTOR = 0.75f;

    // 解决冲突的数据结构由链表转换成树的阈值,默认为8
    static final int TREEIFY_THRESHOLD = 8;

    // 解决冲突的数据结构由树转换成链表的阈值,默认为6
    static final int UNTREEIFY_THRESHOLD = 6;

    /* 当桶中的bin被树化时最小的hash表容量。
     *  如果没有达到这个阈值,即hash表容量小于MIN_TREEIFY_CAPACITY,当桶中bin的数量太多时会执行resize扩容操作。
     *  这个MIN_TREEIFY_CAPACITY的值至少是TREEIFY_THRESHOLD的4倍。
     */
    static final int MIN_TREEIFY_CAPACITY = 64;

    static class Node<K,V> implements Map.Entry<K,V> {
        //...
    }
    // 存储数据的数组
    transient Node<K,V>[] table;

    // 遍历的容器
    transient Set<Map.Entry<K,V>> entrySet;

    // Map中KEY-VALUE的数量
    transient int size;

    /**
     * 结构性变更的次数。
     * 结构性变更是指map的元素数量的变化,比如rehash操作。
     * 用于HashMap快速失败操作,比如在遍历时发生了结构性变更,就会抛出ConcurrentModificationException。
     */
    transient int modCount;

    // 下次resize的操作的size值。
    int threshold;

    // 负载因子,resize后容量的大小会增加现有size * loadFactor
    final float loadFactor;
}

HashMap的初始化

    public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // 其他值都是默认值
    }

通过源码可以看出初始化时并没有初始化数组table,那只能在put操作时放入了,为什么要这样做?估计是避免初始化了HashMap之后不使用反而占用内存吧,哈哈哈。

HashMap的存储操作

    public V put(K key, V value) {
        return putVal(hash(key), key, value, falsetrue);
    }

下面我们详细讲一下HashMap是如何确定数组索引的位置、进行put操作的详细过程以及扩容机制(resize)

搜索公众号 Java项目精选,回复“项目”,送你一份项目大全.pdf

hash计算,确定数组索引位置

不管增加、删除、查找键值对,定位到哈希桶数组的位置都是很关键的第一步。前面说过HashMap的数据结构是数组和链表的结合,所以我们当然希望这个HashMap里面的元素位置尽量分布均匀些,尽量使得每个位置上的元素数量只有一个,那么当我们用hash算法求得这个位置的时候,马上就可以知道对应位置的元素就是我们要的,不用遍历链表,大大优化了查询的效率。HashMap定位数组索引位置,直接决定了hash方法的离散性能。

看下源码的实现:

static final int hash(Object key) {   //jdk1.8
     int h;
     // h = key.hashCode() 为第一步 取hashCode值
     // h ^ (h >>> 16)  为第二步 高位参与运算
     return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

通过hashCode()的高16位异或低16位实现的:(h = k.hashCode()) ^ (h >>> 16),主要是从速度、功效、质量来考虑的,这么做可以在数组table的length比较小的时候,也能保证考虑到高低Bit都参与到Hash的计算中,同时不会有太大的开销。

大家都知道上面代码里的key.hashCode()函数调用的是key键值类型自带的哈希函数,返回int型散列值。理论上散列值是一个int型,如果直接拿散列值作为下标访问HashMap主数组的话,考虑到2进制32位带符号的int表值范围从‑2147483648到2147483648。前后加起来大概40亿的映射空间。只要哈希函数映射得比较均匀松散,一般应用是很难出现碰撞的。但问题是一个40亿长度的数组,内存是放不下的。你想,HashMap扩容之前的数组初始大小才16。所以这个散列值是不能直接拿来用的。用之前还要先做对数组的长度取模运算,得到的余数才能用来访问数组下标。源码中模运算是在这个indexFor( )函数里完成。

bucketIndex = indexFor(hash, table.length);
//indexFor的代码也很简单,就是把散列值和数组长度做一个"与"操作,
static int indexFor(int h, int length) {
   return h & (length-1);
}

顺便说一下,这也正好解释了为什么HashMap的数组长度要取2的整次幂。因为这样(数组长度‑1)正好相当于一个“低位掩码”。“与”操作的结果就是散列值的高位全部归零,只保留低位值,用来做数组下标访问。以初始长度16为例,16‑1=15。2进制表示是00000000 0000000000001111。和某散列值做“与”操作如下,结果就是截取了最低的四位值。

  10100101 11000100 00100101
& 00000000 00000000 00001111
----------------------------------
  00000000 00000000 00000101 //高位全部归零,只保留末四位

但这时候问题就来了,这样就算我的散列值分布再松散,要是只取最后几位的话,碰撞也会很严重。更要命的是如果散列本身做得不好,分布上成等差数列的漏洞,恰好使最后几个低位呈现规律性重复,就无比蛋疼。这时候“扰动函数”的价值就出来了,说到这大家应该都明白了,看下图。

img

hash计算过程

右位移16位,正好是32bit的一半,自己的高半区和低半区做异或,就是为了混合原始哈希码的高位和低位,以此来加大低位的随机性。而且混合后的低位掺杂了高位的部分特征,这样高位的信息也被变相保留下来。

putVal方法

HashMap的put方法执行过程可以通过下图来理解,自己有兴趣可以去对比源码更清楚地研究学习。

源码以及解释如下:

    // 真正的put操作    ChatGPT中文网站:https://svip.cxyquan.com/       final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        // 如果table没有初始化,或者初始化的大小为0,进行resize操作
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        // 如果hash值对应的桶内没有数据,直接生成结点并且把结点放入桶中
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        // 如果hash值对应的桶内有数据解决冲突,再放入桶中
        else {
            Node<K,V> e; K k;
            //判断put的元素和已经存在的元素是相同(hash一致,并且equals返回true)
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            // put的元素和已经存在的元素是不相同(hash一致,并且equals返回true)
            // 如果桶内元素的类型是TreeNode,也就是解决hash解决冲突用的树型结构,把元素放入树种
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
                // 桶内元素的类型不是TreeNode,而是链表时,把数据放入链表的最后一个元素上
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        // 如果链表的长度大于转换为树的阈值(TREEIFY_THRESHOLD),将存储元素的数据结构变更为树
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    // 如果查已经存在key,停止遍历
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            // 已经存在元素时
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        // 如果K-V数量大于阈值,进行resize操作
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }

扩容机制

HashMap的扩容机制用的很巧妙,以最小的性能来完成扩容。扩容后的容量就变成了变成了之前容量的2倍,初始容量为16,所以经过rehash之后,元素的位置要么是在原位置,要么是在原位置再向高下标移动上次容量次数的位置,也就是说如果上次容量是16,下次扩容后容量变成了16+16,如果一个元素在下标为7的位置,下次扩容时,要不还在7的位置,要不在7+16的位置。

我们下面来解释一下Java8的扩容机制是怎么做到的?n为table的长度,图(a)表示扩容前的key1和key2两种key确定索引位置的示例,图(b)表示扩容后key1和key2两种key确定索引位置的示例,其中hash1是key1对应的哈希与高位运算结果。

元素在重新计算hash之后,因为n变为2倍,那么n-1的mask范围在高位多1bit(红色),因此新的index就会发生这样的变化:

因此,我们在扩充HashMap的时候,不需要像JDK1.7的实现那样重新计算hash,只需要看看原来的hash值新增的那个bit是1还是0就好了,是0的话索引没变,是1的话索引变成“原索引+oldCap”,可以看看下图为16扩充为32的resize示意图:而hash值的高位是否为1,只需要和扩容后的长度做与操作就可以了,因为扩容后的长度为2的次幂,所以高位必为1,低位必为0,如10000这种形式,源码中有e.hash & oldCap来做到这个逻辑。ChatGPT中文网站:https://svip.cxyquan.com/   

这个设计确实非常的巧妙,既省去了重新计算hash值的时间,而且同时,由于新增的1bit是0还是1可以认为是随机的,因此resize的过程,均匀的把之前的冲突的节点分散到新的bucket了。这一块就是JDK1.8新增的优化点。有一点注意区别,JDK1.7中rehash的时候,旧链表迁移新链表的时候,如果在新表的数组索引位置相同,则链表元素会倒置,但是从上图可以看出,JDK1.8不会倒置。下面是JDK1.8的resize源码,写的很赞,如下:

    final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        // 计算新的容量值和下一次要扩展的容量
        if (oldCap > 0) {
        // 超过最大值就不再扩充了,就只好随你碰撞去吧
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            // 没超过最大值,就扩充为原来的2倍
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        // 计算新的resize上限
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        if (oldTab != null) {
            // 把每个bucket都移动到新的buckets中
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                //如果位置上没有元素,直接为null
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    //如果只有一个元素,新的hash计算后放入新的数组中
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    //如果是树状结构,使用红黑树保存
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    //如果是链表形式
                    else { // preserve order
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            //hash碰撞后高位为0,放入低Hash值的链表中
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            //hash碰撞后高位为1,放入高Hash值的链表中
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        // 低hash值的链表放入数组的原始位置
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        // 高hash值的链表放入数组的原始位置 + 原始容量
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

来源:https://github.com/feigeswjtu/java-basics



后端专属技术群

构建高质量的技术交流社群,欢迎从事编程开发、技术招聘HR进群,也欢迎大家分享自己公司的内推信息,相互帮助,一起进步!

文明发言,以交流技术职位内推行业探讨为主

广告人士勿入,切勿轻信私聊,防止被骗

加我好友,拉你进群

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
人到老年百事哀𝘼𝙦𝙪𝙖𝙨𝙘𝙪𝙩𝙪𝙢三防夹克,经典、优雅不凡的英伦风!还送长袖T恤!华人注意!再不买就别买了!利率逼近8%!!!!!!!!微距蒲公英,形体语言真没想到风衣1折!国际重奢𝘼𝙦𝙪𝙖𝙨𝙘𝙪𝙩𝙪𝙢(雅格狮丹)风衣都让我们找来了1折入!国际重奢𝘼𝙦𝙪𝙖𝙨𝙘𝙪𝙩𝙪𝙢雅格狮丹三防夹克,下单送长袖T恤!1折入!国际重奢𝘼𝙦𝙪𝙖𝙨𝙘𝙪𝙩𝙪𝙢(雅格狮丹)三防夹克,防风防污防泼水,好穿又有品!好东西真不一样!国际重奢𝘼𝙦𝙪𝙖𝙨𝙘𝙪𝙩𝙪𝙢雅格狮丹卫裤,1折限量抢!真没想到!国际重奢𝘼𝙦𝙪𝙖𝙨𝙘𝙪𝙩𝙪𝙢雅格狮丹的风衣都让我们找来了,1折限时抢太好了!春节列纽约州公校假日!! 霍楚将签署法案 纽约华人社区高呼!!换季大捡漏!国际重奢𝘼𝙦𝙪𝙖𝙨𝙘𝙪𝙩𝙪𝙢短袖买一送一!库存不多,手慢无!1折入!穿过国际重奢𝘼𝙦𝙪𝙖𝙨𝙘𝙪𝙩𝙪𝙢的男人,才会明白什么是品质!瞒天过海美人组团盗宝,东成西就设计非洲海淡-金盆洗手的论语(小说)(6)大捡漏!国际重奢𝘼𝙦𝙪𝙖𝙨𝙘𝙪𝙩𝙪𝙢雅格狮丹出系列了!五防保暖夹克、POLO衫、西裤随便搭图文并茂,三步速出「原神」文稿!首个70亿参数图文混合创作大模型正式开源,一键生成神作明晚那啥!!!!!!太好了!惠及全美360万员工!!美国新劳工政策,年薪低于$5.5万有权获加班费...「老钱风毛衣」今冬火了!白百何、赵露思、江疏影…女明星们都在穿,太太太好看了!!!人活着在寻找什么 翻过三座大山 还有家庭事业信念? 《血色将至》深度赏析一1折入!穿过国际重奢𝘼𝙦𝙪𝙖𝙨𝙘𝙪𝙩𝙪𝙢的人,才是真正的有品!国际重奢𝘼𝙦𝙪𝙖𝙨𝙘𝙪𝙩𝙪𝙢中长款风衣,品位与优雅,兼顾帅气和女人味!真没想到!国际重奢𝘼𝙦𝙪𝙖𝙨𝙘𝙪𝙩𝙪𝙢(雅格狮丹)风衣都让我们找来了(1折限时抢)火了172年!国际重奢𝘼𝙦𝙪𝙖𝙨𝙘𝙪𝙩𝙪𝙢来了,又好穿又有品!!MiniGPT-5来了!图文并茂的全新生成方式!红色日记 9.1-30英国百年贵族奢牌𝘼𝙦𝙪𝙖𝙨𝙘𝙪𝙩𝙪𝙢休闲卫衣!经典、优雅不凡的英伦风~火了172年!国际重奢𝘼𝙦𝙪𝙖𝙨𝙘𝙪𝙩𝙪𝙢长袖Polo衫,又好穿又有品!千元预算买什么包?这篇都给你看好了!!换季大捡漏!国际重奢𝘼𝙦𝙪𝙖𝙨𝙘𝙪𝙩𝙪𝙢经典纯色T恤,买一送一!YaRN:一种高效RoPE扩展方法,可推理更长上下文并达到SOTA点趣成金 | 图文篇:把握住图文流量红利,内容即成交这也太好哭了吧!!!!HMO正式获批,飞鹤率先推出国内首款HMO奶粉一个人焦虑的本质:做得太少,想得太多今年秋冬,这样穿“外套”的你,美得太高级了!!!
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。