它号称 ChatGPT 最强平替,大更新后表现如何 | 附体验链接科技1年前如果问当下最强的 AI 助手是哪个?那毋庸置疑,绝对是 ChatGPT。前不久 ChatGPT 猝不及防地崩了,直接在网上炸出一大批重度用户。靠它完成作业的的学生党,一时之间面对论文无从下笔,靠它「续命」的打工人更是连班都不想上了。今年以来,ChatGPT 每隔一段时间就会「暴毙」,号称其最强平替的 Claude 或许是你最可靠的备选方案。上下文翻倍,Claude 2.1 大更新恰巧,近日 Claude 宣布了一波大更新。以往 Claude 能处理的上下文只有 10 万 token(token 是文本处理中的最小单位,如单词或短语),现在 Claude 2.1 Pro 版能处理高达 200K 上下文。Anthropic 官方表示,200K 上下文约等于 150000 个单词或 500 页文本,这意味着你可以上传代码库、财务报表、或长篇文学作品,供 Claude 进行总结、问答、预测趋势、比较和对比多个文档。那它能处理汉语的能力有多强呢?我们可以以此前饱受争议的 Yi-34B 做个简单说明。同样是发布支持 200K 超长上下文窗口版本, Yi-34B 可以处理约 40 万汉字超长文本输入,约等于一本《儒林外史》的长度。在语言模型上,长上下文能够提供更精确的用法和含义,有助于消除歧义,帮助模型生成连贯、准确度的文本,比如「苹果」一词出现在「采摘水果」或「新款 iPhone」上,含义就完全迥异。值得一提的是,在 GPT-4 尚未恢复实时联网功能之前,免费的 Claude 2.0 就已经能够实时访问网页链接并总结网页内容,即使到了现在,也是 GPT-3.5 所不具备的优点。免费版 Claude 还能读取、分析和总结你上传的文档,哪怕碰上「打钱」的 GPT-4,Claude 处理文档的表现也丝毫不虚。我们同时给当下网页版的 Claude 和 GPT-4「喂」了一份 90 页的 VR 产业报告,并询问同样的问题。向左滑动查看更多内容二者的反应速度没有拉开差距,但免费版 Claude 的回复反而更流畅,且答案的质量也略高,而 GPT-4 的检索功能还会因为分页和视图受到限制,相当不「灵性」。 向左滑动查看更多内容检索只是「小儿戏」,作为提高学习或工作效率的工具,我们需要的是更「聪明」的模型。当我让它们分析 VR 行业五年后的变化格局,虽然表达的观点都差不多,但 Claude 以富有逻辑的分点作答取胜。向左滑动查看更多内容答是能答得上来,能不能答对才是关键。过去一年里,我们目睹不少被大模型「满嘴跑火车」坑了的悲伤案例。Anthropic 称 Claude 2.1 的虚假或幻觉类陈述减少了 2 倍,但它并没有给出明确的数据,以至于英伟达科学家 Jim Fan 发出质疑:「最简单实现 0% 幻觉的解决方案就是拒绝回答每一个问题。」Anthropic 还设计了很多陷阱问题来检验 Claude 2.1 的诚实度。多轮结果表明,遇到知识的盲区,Claude 2.1 更倾向于不确定的表达,而不是生造似是而非的回答来欺骗用户。简单点理解就是,假如 Claude 2.1 的知识图谱里没有「广东的省会不是哈尔滨」这样的储备,它会诚恳地说「我不确定广东的省会是不是哈尔滨」,而不是言之凿凿地表示「广东的省会是哈尔滨」。在 Claude 看来,这也是它相较于 ChatGPT 的优点。Claude Pro 的订阅费用约为 20 美元,使用次数达到免费版的五倍,普通用户可以发送的消息数量将根据消息的长度有所不同。还剩 10 条消息时,Claude 就会发出提醒。假设你的对话长度约为 200 个英语句子,每句 15-20 个单词,那么你每 8 小时至少能发送 100 条消息。若你上传了像《了不起的盖茨比》这样大的文档,那么在接下来的 8 小时里你可能只能发送 20 条消息。除了普通用户,Claude 2.1 还贴心地根据开发者的需求,上线了一项名为「工具使用」的测试版功能,允许开发者将 Claude 集成到用户已有的流程、产品和 API 中。 也就是说,Claude 2.1 可以调用开发者自定义的程序函数或使用第三方服务提供的 API 接口,可以向搜索引擎查询信息以回答问题,连接私有数据库,从数据库检索信息。你可以定义一组工具供 Claude 使用并指定请求。然后 Claude 将决定需要哪种工具来完成任务并代表他们执行操作,比如使用计算器进行复杂的数值推理,将自然语言请求转换为结构化 API 调用等。Anthropic 也做出了一系列改进来更好地服务 Claude API 的开发者,详情如下 👇开发者控制台优化体验和用户界面,使基于 Claude API 的开发更便捷更容易测试新的 prompt(输入提示/问题),有利于模型的持续改进让开发者像在沙盒环境中迭代试错不同的 prompt可以为不同的项目创建多个 prompt 并快速切换prompt 的修改会自动保存下来,方便回溯支持生成代码集成到 SDK 中,应用到实际项目中此外,Claude 2.1 还引入了「系统提示」功能,这是一种向 Claude 提供上下文和指令的方式,能够让 Claude 在角色扮演时更稳定地维持人设,同时对话中又不失个性和创造力。当然,不同于简单 Prompt 的应用,该功能主要是面向开发者和高级用户设计的,是在 API 接口使用的,而不是在网页端使用。和 Claude 2.0 一样,Claude 2.1 每输入 100 万 token 需要花费 8 美元,比 GPT-4 Turbo 便宜了 2 美元,输出为 24 美元,比 GPT-4 Turbo 便宜了 6 美元。适用于低延迟、高吞吐量的 Claude Instant 版本每输入 100 万 token 需要收费 1.63 美元,输出为 5.51 美元。ChatGPT 杀手还是平替?就目前而言,虽然 Claude 2.1 表现很强悍,但仍只能充当 ChatGPT 宕机的替代品,想要颠覆 ChatGPT 还有很长的路要走。打个不太严谨的比方,Claude 2.1 就像是丐版的 GPT-4。 以 Claude 2.1 Pro 最擅长的 200K 为例,尽管 Claude 2.1 Pro 理论处理能力上要比 128K 的 GPT-4 Turbo 更强,但实际结果显示,在需要回忆和准确理解上下文的能力上,Claude 2.1 Pro 还是远逊色于 GPT-4 Turbo。OpenAI 开发者大会之后,网友 Greg Kamradt 曾对 GPT-4-128K 的上下文回忆能力进行了测试。通过使用 Paul Graham(美国著名程序员) 的 218 篇文章凑够了 128K 的文本量,他在这些文章的不同位置(从文章顶端 0% 到底部 100%)随机插入一个事实语句:「在阳光明媚的日子里,在多洛雷斯公园吃三明治是在旧金山的最佳活动。」然后他让 GPT-4 Turbo 模型检索这个事实语句,并回答有关这个事实语句的相关问题,最后采用业界常用的 LangChain AI 评估方法对给出的答案进行评估。绿色代表更高的检索准确度,红色则代表更低的检索准确度 图片来自:@LatentSpace2000评估结果如上图,GPT-4 Turbo 可以在 73K token 长度内保持较高的记忆准确率。倘若信息位于文档开头,无论上下文有多长,它总能检索到。只有当需要回忆的信息位于文档的 10%-50% 区间时,GPT-4 Turbo 的准确率才开始下降。作为对比,该网友还提前要到了 Claude 2.1 Pro 的内测资格,并同样做了「大海捞针」的测试。从评估的结果来看,在长达 20 万 token(大约 470 页)的文档中,和 GPT-4 Turbo 一样,Claude 2.1 Pro 文档前部的信息比后部的回忆效果差一些。绿色代表更高的检索准确度,红色则代表更低的检索准确度但 Claude 2.1 Pro 上下文长度效果较好的区间是在 24K 之前,远低于 GPT-4 Turbo 的 73K。超过 24K 后,Claude 2.1 Pro 记忆性能就开始明显下降,90K 后,效果变得更差,出错率更是大幅度上升。可以看到的是,随着上下文长度的增加,GPT-4 Turbo 和 Claude 2.1 Pro 检测的准确度都在逐渐降低。尽管 Claude 2.1 Pro 的测试覆盖了更宽的上下文长度,但相比更实用的准确度,GPT-4 Turbo 还是 Claude 2.1 Pro 需要追赶的对象。Claude 或许是免费版中最强的大模型之一。如果你是文字工作者,当 ChatGPT 崩溃,堪比 GPT-3.8 的 Claude 能够解决你的燃眉之急,甚至表现得要更好。但个性化的 GPTs、轻松生图的 DALL·E 3,语音交流等功能依然是 ChatGPT 不可多得的护城河。在强大的 GPT-4 Turbo 面前,升级后的 Claude 2.1 Pro 版本也得败下阵来。最后放上 Claude 的体验链接:https://claude.ai/login,若 ChatGPT 再次崩了,放轻松,起码你还有 Claude。 微信扫码关注该文公众号作者戳这里提交新闻线索和高质量文章给我们。来源: qq点击查看作者最近其他文章