面向企业用户的生成式 AI 助手 Amazon Q,和 ChatGPT 很不一样。 作者 | 北方 北京时间 11 月 28 日凌晨,亚马逊云科技的 re: Invent 2023 大会在拉斯维加斯召开。 这个被称为「云计算春晚」的盛会,今年很不一样。不一样的原因,当然近来生成式 AI 的爆火——从 ChatGPT 问世到现在,已经整整一年;以 ChatGPT、Stable Diffusion、Runway 等等为代表的生成式 AI 应用掀起狂潮,裹挟世界进入新时代。我们都已经看到了生成式 AI 的巨大潜力,它将会重塑人们的一切行为方式,无论是信息获取,还是生产内容和产品。对企业中如何应用生成式 AI,亚马逊云科技做了一些研究。研究结果表明,有 75% 的应用集中在四个方面:市场,客户,软件工程和研发。而那些尝试把生成式 AI 引入工作场景的企业,往往发现效果并不尽如人意。现有的生成式 AI 产品面向个人用户,基于大量来自互联网、书籍数据库和维基百科的数据训练而成,无法对于企业的特定业务问题给出有针对性的建议;而若是给这些 AI 工具提供企业内部知识,又可能会导致隐私和数据安全问题。具体而言,这些通用的生成式 AI 应用不了解企业的业务、数据、客户、运营或者员工;它不知道使用者的具体工作,不知道当前任务的信息环境,不知道可用的数据源。这大大限制了生成式 AI 应用的能力。而且,目前这些面向个人用户的产品也没有配备企业所需的安全和隐私功能,无法保障员工在日常工作中的数据和信息安全。最近这类信息泄露事件层出不穷,不少企业都禁止员工在工作中使用 ChatGPT——包括 OpenAI 的最大投资方之一的微软公司在内。而要是企业开发属于自己的 AI 应用,则不仅需要大量时间和投入,还难以随着业务进展持续更新。企业的 AI 应用,应该和企业的信息资源管理一样分级分层、设置权限;应该能够和其他工具配合,融入企业工作流中;应该能根据公司的信息政策和可信信息源审查,以及应该能够保证隐私和数据安全。显然,这并不容易。这个困境和云服务出现之前的 IT 基础设施建设困境,在本质上有些相似之处。而解法,也许异曲同工。亚马逊云科技 CEO Adam Selipsky 在今年的主题演讲中说:「围绕生成式 AI 的创新是爆炸性的。我们相信,生成式 AI 应该帮助工作中的每个人。」这就是亚马逊云科技发布 Amazon Q 的原因:一个面向企业的、为工作而设计的生成式 AI 助手。它可以利用企业私有知识完成任务,也可以和亚马逊云科技的诸多产品配合使用,帮助企业提升运营与开发效率。它是一个通用性产品,客户可以根据自身情况灵活配置,从而让客户企业的每位员工都能充分发挥生成式 AI 的优势——自然语言理解、信息提取、生成内容,这些都是生成式 AI 的长项。「拥有最广泛和最深入的能力很重要,」Selipsky 说。「我们开始利用亚马逊云科技提供的服务彻底重新思考 IT 基础设施。」这可能是今年亚马逊云科技最重要的发布。在面向企业的生成式 AI 应用上,亚马逊云科技率先交出了答卷。毕竟,面向个人和面向企业的生成式 AI 区别巨大,企业若想借助 AI 提升效率,还得靠擅长服务企业的资深专家。那么,Amazon Q 是什么?
01
Q 来自问题
Amazon Q 这个名字结合最近的火热新闻,给人们留下了不少猜测空间。其中最主流的,是认为「Q」来自问题。这很合理。毕竟无论是企业还是企业的员工,都是通过解决问题来创造价值。面向企业用户的生成式 AI 应用,应该能解决哪些问题?在企业语境下的生成式 AI 应该擅长准确回答与企业内部知识有关的问题;能够从大量文档和数据源中提取高价值信息,辅助做出决策;可以从多个数据源获取数据产生内容,无论是撰写营销文案还是编写业务代码。如果打开配置好的 Amazon Q,会发现它的界面和市面上的其它生成式 AI 聊天应用区别不大。如果让它「写一篇关于专业人士如何在时间管理方面出类拔萃的引人注目的文章,并将文章字数控制在 500 字以内」,或者「为这份可持续设计办公空间的报告创建一份格式精美的摘要」,它也都能完成相应任务。但是,最重要的地方是看不见的:它的数据和信息来源,是用户自己企业的私有知识,而这些知识是安全的。容易看出,这样的提示词和使用 ChatGPT 等生成式 AI 应用时几乎没有区别;如果说有的话,就是缺少了在使用其他个人生成式 AI 时的「角色扮演」步骤。这是因为 Amazon Q 知道用户所定义的角色,理解角色的工作范围,明白角色的工作目标。角色设定早已存在于企业的组织架构和职位安排中,这些企业知识可以成为 Amazon Q 的内隐知识。接下来,在某处的数据中心里,Amazon Q 搜索它有权限访问的、已经做好索引的数据源,以生成式 AI 的能力生成内容,提供数据来源,方便使用者审查。亚马逊云科技 CEO Adam Selipsky 在主题演讲中说:「你可以轻松地与 Amazon Q 进行聊天、生成内容、采取行动。这一切都基于你对你的系统、数据存储库和运营的理解。」而除了这些生成式 AI 的能力之外,考虑企业的使用环境,Amazon Q 还有其他特别之处。第一,是基于用户权限的访问控制:Amazon Q 可以理解用户的身份、角色和权限。如果用户在没有 Amazon Q 的情况下没有权限访问某些数据,那么使用 Amazon Q 也无法访问这些数据。当然,管理员可以设置,允许将特定的回应仅限制给特定的员工或数据源。第二,是能够与其他常用企业应用协同。Amazon Q 可以连接 40 多个流行的企业应用程序和文档库:包括 S3、Salesforce、Google Drive、Microsoft 365、ServiceNow、Gmail、Slack、Atlassian 和 Zendesk 等等,可以从这些应用中获取数据,也能将它们连接成工作流。第三,是避免生成与企业政策不符的内容。Amazon Q 拥有管理控制功能,可以阻止整个主题,也可以使用关键字过滤问题和最终答案。管理员还可以做出限制,让回复只来自企业数据的信息,而不是底层大模型的世界知识,避免产生那个臭名昭著的、已经被《剑桥词典》列入年度词汇的「幻觉」现象。第四,则是最重要的数据和信息安全。驱动 Amazon Q 的模型是来自亚马逊云科技提供的底层模型,其中包括亚马逊云科技的 Titan 系列。这些模型不会使用客户数据训练。在构建 Amazon Q 时就已经充分考虑了安全性和隐私问题,以帮助客户满足最严格的企业需求。这就是面向企业用户的生成式 AI 应用,是适合客户企业的业务专家。不过,Selipsky 说,这只是「我们将继续重新定义未来工作方式的开端。」