Redian新闻
>
国产大模型,逼近GPT-4|甲子光年

国产大模型,逼近GPT-4|甲子光年

科技

国产“GPT Store”发布了。


作者|赵健


国产大模型与OpenAI还有多少差距?


在去年11月30日的「甲子引力」年终盛典上,智谱AI CEO张鹏给到的答案是,在单点或少量指标上可以逼近OpenAI,但总体平均能力还存在不小的差距,而这也是压力与动力的来源。


但在两个月后的今天,这个差距已经无限接近。


智谱AI在今天举办的技术开放日上,正式发布新一代基座大模型GLM-4,整体逼近GPT-4,大约是GPT-4 90%以上的能力。GLM-4基础能力全面升级,支持128K上下文、多模态更新,还正式发布了对标OpenAI GPTs的GLMs个性化智能体功能,以及GLMs商店。


图片来自智谱AI


智谱AI是国内“百模大战”中估值最高的明星大模型公司之一。2023年10月,智谱AI宣布完成超25亿人民币融资,投资方汇聚了国内一线明星机构,包括社保基金中关村自主创新基金(君联资本为基金管理人)、美团、蚂蚁、阿里、腾讯、小米、金山、顺为、Boss直聘、好未来、红杉、高瓴等。


在绝大多数人眼中,2023年是大模型元年,ChatGPT打响了“百模大战”的发令枪;但在张鹏看来,大模型的元年要追溯到2020年,这一年OpenAI发布了ChatGPT的“前身”GPT-3,刚成立一年的智谱AI开始全力投入大模型的研发。


提前3年的“抢跑”,让智谱AI有更多的技术储备。今天智谱AI在Hugging Face上的下载量超过1100万次,位居全球最受欢迎开源机构第五名,也是国内唯一上榜的公司;其对话模型ChatGLM在GitHub上获得了5万+颗星,超过Llama。


在2023年初,智谱AI设立了一个雄心勃勃的目标:用一年的时间追平OpenAI最先进的模型。


现在,这位大模型的优等生交卷了。





1.产学研结合,科学家创业


在介绍GLM-4的技术升级之前,首先回顾一下智谱AI的成立过程,这是一家典型的科学家创业的公司。


智谱AI的前身,是在2006年诞生于清华大学计算机系知识工程实验室(KEG)的明星产品AMiner——学术搜索与情报挖掘平台。清华大学教授、KEG主任唐杰,是AMiner的核心创立者之一。


2013年,AMiner平台的商业化应用提上日程。2019年,在国家相关政策的鼓励与支持下,清华大学教授李涓子、唐杰等人依托AMine为基础,共同成立智谱AI,致力于打造可解释、鲁棒、安全可靠、具有推理能力的新一代认知引擎的公司。


清华大学计算机系教授、中国科学院院士张钹担任智谱AI首席顾问。智谱AI CEO张鹏,是国内首个中英文平衡的跨语言知识图谱系统XLORE的设计和研发者。


在智谱AI成立的第一天,公司写下了“让机器像人一样思考”的愿景。


2020年6月,智谱AI一周年司庆日,恰好撞上了OpenAI发布GPT-3。当天,张鹏与受邀参加智谱AI座谈的张钹院士深入讨论了GPT-3的技术前景。GPT-3让张鹏隐隐意识到,大模型确实是未来的方向。张鹏说:“OpenAI做的这个事情,也是我们一直期待去做的,一定追寻去做的,更是一定要去做的。”


同一年,智谱AI把OpenAI作为自己的对标对象,全力进行大模型的研发。


当时业内主流的预训练算法框架有三个:GPT、BERT与T5。智谱AI没有选择既有算法框架,而是选择了自研。2021年,智谱AI团队联合清华大学提出了GLM(General Language Model)算法框架,结合了GPT与BERT两者的特点,既能从前文预测后文,也能从后文猜测前文。


智谱AI团队参与了智源研究院主导的“悟道”大模型项目。悟道团队先是训练出一个百亿参数的稠密模型,然后又通过“稀疏化”方法训练出一个1.75万亿稀疏模型。这个万亿大模型最终用硬盘拷下来的文件大小约为20T,需要超过500张A100才能做推理,成本太高且性能并不好。


经过几轮激烈的争论,智谱AI团队最终决定自己训练一个千亿参数的稠密模型,直接对标1750亿参数的GPT-3。


最大的挑战是高昂的训练成本。智谱AI团队算了一笔账,要训练一个千亿参数大模型,需要至少1000张A100不出错地连续跑两个月。而当时整个智源研究院,也只有480张A100。


智谱AI找到了济南超算中心。济南超算在2020年采购了一批A100,原本计划将算力提供给视频游戏公司,但因为市场变化,这批芯片当时处于闲置状态。


于是,智谱AI租用了1000张A100,并从底层算子重构,投入20多人训练了8个月,终于在2022年7月训练出了千亿大模型——GLM-130B,并将其开源。


在训练过程中,智谱AI遇到了很多挑战,预训练一个高精度的千亿模型与训练百亿模型完全不同。张鹏告诉「甲子光年」,从训练百亿模型到千亿模型,难度绝不止线性地增长10倍,挑战包括频繁的随机硬件故障、模型梯度爆炸、算法中意外的过多内存使用、新的 Megatron 和 DeepSpeed 框架中 3D 流水线的调试、无法从优化器状态中恢复、机器间TCP拥塞,以及许多许多意外的 “bug”。但最终这些问题都被一一攻克。


2022年11月,斯坦福大学大模型中心对全球30个主流大模型进行了全方位的评测,GLM-130B是亚洲唯一入选的大模型。


在推出GLM-130B的基座模型之后,智谱AI又先后在应用层推出了AIGC模型及产品矩阵,包括生成式AI 提效助手“智谱清言”、高效率代码模型CodeGeeX等。


图片来自智谱AI CEO张鹏演讲PPT


从产品矩阵来看,智谱AI成了国内最像OpenAI的大模型公司。智谱AI也在2023年初定下了目标:用一年的时间,追平OpenAI最先进的模型,也就是后来发布的GPT-4。




2.逼近GPT-4


今天的技术开放日,智谱AI正式发布了新一代基座大模型GLM-4,这是智谱AI的交卷时刻。张鹏表示,GLM-4,已经超过GPT-3.5,整体逼近GPT-4。


GLM-4带来了5项重大升级,首先是基础能力的全面提升。


在权威的英文测试榜单中,GLM-4已经整体逼近GPT-4,平均能达到GPT-4 90%以上的水平,在个别项目上表现持平;而在国内企业更加看重的中文任务上,GLM-4的表现全面超过GPT-4。


图片来自智谱AI CEO张鹏演讲PPT


第二项更新是更长的上下文窗口。


GLM-4将上下文从32K扩展到128K,与GPT-4 Turbo相当,单词提示词文本达到300页;同时不丢失精度,在被称为“大海捞针”的Needle test中几乎100%召回。


第三项更新是多模态能力,文生图与多模态能力都得到增强。


张鹏表示,CogView的文生图能力明显强于开源的Stable Diffusion XL模型,逼近OpenAI的DALL-E3,在对齐、保真、安全、组合布局等维度上达到DALL-E3 90%的水平。


图片来自智谱AI CEO张鹏演讲PPT


第四项能力更新,则是把以上单点的能力进行“All in One”,推出GLM-4 All Tools工具。具体包括:


  • 结合上下文语境进行AI绘画创作;


  • 自动调用代码解释器进行复杂的方程或微积分求解;


  • 实现文件处理、数据分析、图表绘制等复杂任务,支持Excel、PDF、PPT等文件;


  • 模型自行规划检索任务;自行选择信息源;自行与信息源交互;


  • 根据用户提供的function描述,自动选择所需function并生成参数,以及根据function的返回值生成回复;


  • 多工具自动调用,网页浏监准确率超过 GPT-4。


智谱AI在现场演示了文生图的能力,不过在最后一轮交互中出现了失误,智谱清言迟迟没有给出回复。有网友打趣道:“这是真唱,有实力也有失误。”

最后一项更新,则是对标OpenAI在上周刚刚正式发布的GPTs商店,推出GLMs个性化智能体功能,以及GLMs商店——智能体中心。

智谱清言的GLMs商店界面


就像一个不懂任何代码的用户,仅凭借自然语言交互就能“傻瓜式”构建GPTs一样,智谱AI也支持用简单的提示词指令创建属于自己的GLMs,并上架智能体中心。张鹏在现场宣布,GLMs的模型应用商店“GLM Store”的开发者分成计划也将同期公布。

智谱AI是一家to B基因更浓厚的公司,但在2023年孵化了一个年轻的to C团队,创立了对话机器人智谱清言。如今,这个团队正在依托底层大模型能力,在争夺AI时代入口的竞争中快速卡位。



3.更加Open的AI战略


红杉资本在去年11月曾预测,生成式AI进入第二幕。第一幕是从技术角度出发,第二幕则是从客户角度出发,更多关注基础模型的落地。

智谱AI可能是基础大模型公司中,在商业化落地走的最快的公司。张鹏曾告诉「甲子光年」:“技术与商业化这两件事,一直都是智谱AI的核心战略。”

MaaS(Model as a Service)理念最早就是由智谱AI提出的。MaaS的服务方式主要有三种:云端API、云端私有化以及本地私有化。张鹏在技术开放日现场宣布,已经有200家企事业单位,与智谱AI深度共建AI落地的解决方案。

图片来自智谱AI CEO张鹏演讲PPT


智谱AI定位基座大模型,而不做行业热议的垂直模型。张鹏认为大模型产品的机会在于成为底层操作系统,对外提供API接口。“我们不会直接扎到具体场景里做应用开发,很多行业存在技术、数据的壁垒,不是创业公司的体量能够搞定的,更多希望是合作伙伴在垂直行业深耕。”

张鹏告诉「甲子光年」:“应用层的生态伙伴通常分为几类,第一类是行业性的独立软件开发商(ISV),帮客户做实施交付,或者客户的最后一公里的系统融合打通的工作;第二类是行业性的合作伙伴,他们有比较强的资源与技术能力,我们联合做一些微调模型以及相应的解决方案。此外还有一些开源生态的伙伴等等。”

与生态伙伴合作,短期内可能不会快速做大收入,但长期来看不但能够做大AI的蛋糕,还能避免上一波AI浪潮中常见的定制化陷阱。

智谱AI还在扩大自己的朋友圈,让自己变得更加开放。

一方面是技术上,继续保持开源的战略,将ChatGLM-6B、GLM-130B、WebGLM、VisualGLM、CodeGeeX、CogView、CogVLM、CogAgent等一系列模型开源。可以说,这才是真正意义的“Open AI”。

另一方面,智谱AI宣布了三项基金——大模型科研基金、大模型开源基金和“Z计划”创业基金,来回馈科研、回馈社区,以及构建生态。

其中,智谱与合作伙伴联合设立10亿元的创业基金,已经投资了算力基础设施公司数道智算,大模型公司面壁智能、聆心智能,AI Infra公司无问芯穹、基流科技,以及行业解决方案层的幂律智能、玦芯生物、智览医疗等等。

图片来自智谱AI CEO张鹏演讲PPT


智谱AI,正在用开源开放、生态合作的的方式,构建自己的竞争壁垒。

在把OpenAI列为追赶目标的第四年,智谱AI终于向其看齐。国产大模型若想要真正引领创新,从追赶到超越,再到“无人区”的探索,现在才刚刚开始。

(封面图来自电影《极速车王》)




END.






微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
国产GPTs来了,基于智谱第4代大模型!模型性能均达GPT-4九成以上火星乐园第三部《灰界》第七十二章 回归矩阵卓世科技COO李伟伟:AI大模型驱动商业转化的多元实践|甲子引力长篇小说《谷雨立夏间》33 血污容联云孔淼:大模型落地要聚焦,金融数智化营销=常态化经营策略|甲子引力性能逼近GPT-4,开源Mistral-Medium意外泄露?CEO最新回应来了突发!谷歌发布史上最强大模型Gemini,赶超GPT-4|亮马桥小纪严选甲子光年:2023中国工业视觉技术实践系列报告优等生归来,谷歌最强大模型Gemini能否打败GPT4?|甲子光年在一个地级市,看见中国孵化器的激荡三十年|甲子光年ICLR 2024|把图像视为外语,快手、北大多模态大模型媲美DALLE-32024年或成国产大模型应用爆发年!有道再推多款大模型产品及应用第117章 京都还在亏损的蔚来,钱花到哪里去了?|甲子光年智谱 AI 推出新一代基座大模型 GLM-4,能力逼近 GPT-4,配备多模态、长文本和智能体讯飞星火V3.5整体接近GPT-4 Turbo!首个13B开源大模型发布,深度适配国产算力双林奇案录第三部之鹤鼎莲方壶: 第八节山情水趣话旅游(39):加拿大之行:(3)最接近GPT-4的国产大模型诞生了国产大模型放大招:逼近OpenAI 的GPT-4这个全面对标 OpenAI 的国产大模型,性能已达 90% GPT-4国产大模型黑马诞生,千亿级拿下双榜第一!知识正确性能力突出,大幅降低LLM幻觉问题秒杀700亿Llama 2!最新国产大模型亮相,无需申请即可免费商用,背后公司来自私募巨头一年内完成4轮融资,这家深圳机器人公司做起了扫雪生意|甲子光年卷死!!!不到一年,国产大模型至少188个了。。。电池厂的新年:停产、裁员和降价|甲子光年国产算力和国产大模型,迎来双赢时刻字节跳动Q2收入290亿美元,逼近Meta;机构:Temu和SHEIN美国用户逼近亚马逊|36氪出海·要闻回顾千元成本搞定专业大模型,系统优化+开源大模型是关键 | 潞晨卞正达@MEET2024不仅做GPT Store,OpenAI还要做AI搜索引擎|甲子光年自动驾驶落地,如何做到技术与场景相匹配?|甲子光年逼近GPT-4的新模型发布!「欧洲版OpenAI 」联手微软,却被质疑违背初心数字经济加速向县域下沉,时代呼唤“余姚模式”|甲子光年国产「GPTs」上线!全面对标 OpenAI 的智谱发布大模型,性能逼近 GPT-4GLM-4国产大模型上线 称整体性能逼近GPT-4 降低推理成本
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。