Redian新闻
>
碾压前辈!Meta 发布“最大、性能最好”的开源 Code Llama 70B,但开发者纷纷喊穷:玩不起

碾压前辈!Meta 发布“最大、性能最好”的开源 Code Llama 70B,但开发者纷纷喊穷:玩不起

公众号新闻

作者 | 褚杏娟、核子可乐

当地时间 1 月 29 日,Meta 发布了 Code Llama 70B,Meta 表示这是“Code Llama 家族中体量最大、性能最好的模型版本”。Code Llama 70B 与先前其他家族模型一样提供三种版本,且均可免费用于研究和商业用途:

  • CodeLlama – 70B,基础编码模型;

  • CodeLlama – 70B – Python,专门用于 Python 编码的 70B 模型;

  • Code Llama – 70B – Instruct 70B,针对自然语言指令理解进行微调的版本。

为了对比现有解决方案测试 Code Llama 的性能表现,Meta 选择了两项流行的编码基准:HumanEval 与 Mostly Basic Ptyon Programming(MBPP)。其中 HumanEval 主要测试模型根据文档字符串补全代码的能力,而 MBPP 则测试模型根据描述编写代码的能力。

从基准测试结果来看,Code Llama 的表现优于编码专用的开源 Llama,甚至超越了 Llama 2。例如,Code Llama 34B 在 HumanEval 上的得分为 53.7%,优于 GPT-3.5 的 48.1%,更接近 OpenAI 论文报告的 GPT-4 的 67%。在 MBPP 上,Code Llama 34B 得分为 56.2%,超越了其他最先进的开源解决方案,已经与 ChatGPT 基本持平。

扎克伯格在 Facebook 上说道,“编写和编辑代码已经成为当今人工智能模型最重要的用途之一。编码能力也被证明对人工智能模型更严格、更符合逻辑地处理其他领域的信息非常重要。我对这个进展感到自豪,并期待 Llama 3 和未来的模型中包括这些进展。”

Code Llama 实现原理

Code Llama 是 Llama 2 模型的编码专用版本,是后者在编码数据集之上接受进一步训练的产物,且数据采集周期更长。从本质上讲,Code Llama 拥有比 Llama 2 更强的编码功能。它可以根据代码和自然语言提示词生成代码及与代码相关的自然语言(例如,“为我这一条输出斐波那契序列的函数”),亦可用于代码补全和调试。

Code Llama 支持当今多种高人气编程语言,包括 Python、C++、Java、PHP、Typescript (Javascript)、C# 和 Bash。

这次,Meta 将发布四种 Code Llama 模型版本,参数分别为 7B、13B、34B 和 70B。各模型版本使用 500B 代码 token 与代码相关数据进行训练,且 70B 模型则采用 1TB token 进行训练。7B 与 13B 基础与指令模型还经过 fill-in-the-middle(FIM)训练,允许向现有代码中插入新代码,因此可以支持开箱即用的代码补全等任务。

三种模型分别能够满足不同的服务与延迟要求。例如,7B 模型可以在单一 GPU 上运行。34B 和 70B 模型则可返回最佳结果并提供更好的编码辅助功能。其中 7B 与 13B 模型运行速度更快,适合实时代码补全等强调低延迟的编码任务。

Code Llama 模型可实现最多 10 万个上下文 token 的稳定生成能力。所有模型均在 1.6 万个 token 的序列上进行训练,并在最多 10 万个 token 的输入场景下表现出性能提升。

除了能够生成更长的编码程序之外,更长的输入序列窗口还能为编码大模型解锁其他令人兴奋的新用例。例如,用户可以向模型输入来自代码库的更多上下文信息,确保生成结果的相关性更强。这还有助于在体量更大的代码库中进行调试,帮助开发人员快速找到与特定问题相关的所有代码。现在,开发人员可以将完整代码直接提交至大模型,高效完成涉及大量代码的调试任务。

此外,Meta 还进一步微调了 Code Llama 的两个附加变体:Code Llama – Python 与 Code Llama – Instruct。

Code Llama – Python 是 Code Llama 的特定语言专用变体,使用 100B 个 Python 代码 token 上接受了进一步微调。由于 Python 是代码生成领域的基准测试语言,并且通过 PyTorch 在 AI 社区中发挥着重要作用,所以 Meta 相信这套专用模型将提供更有针对性的实际功能。

Code Llama – Instruct 则是 Code Llama 的指令微调与对齐变体。指令微调同样属于继续训练过程,能够满足其他特定目标。该模型接受“自然语言指令”输入与预期输出组合的持续训练,因此能够更好地理解人们对于提示词的生成期望。由于 Code Llama – Instruct 专门就生成实用、安全的自然语言回答进行了微调,因此在使用 Code Llama 进行代码生成时,Meta 建议开发者优先选择 Code Llama – Instruct

Meta 并不建议开发者使用 Code Llama 或者 Code Llama – Python 执行常规自然语言任务,因为这两套模型并不是为遵循自然语言指令所设计。Code Llama 专门用于特定编码任务,不适合作为其他通用任务的基础模型。

另外,在使用 Code Llama 模型时,用户须遵守 Meta 指定的许可证与可接受使用政策。

更大参数会带来更高的硬件要求?

没有意外,Code Llama 70B 赢得了开发者们的赞扬,甚至有人称“Code Llama 70B 是代码生成领域的游戏规则改变者。”

但有自称使用过的开发者表示,“我使用 Ollama 尝试了 70B 模型,即使经过多次尝试,它也无法编写贪吃蛇游戏。而 ChatGPT 一次尝试就给出了一款可以运行的游戏。”

另一方面,随着模型参数的增加,开发者们也担心自己手头没有足够装备来满足运行 Code Llama 70B。有人指出,在 A100-80GB 上训练所有 12 个 Code Llama 模型需要 1400K GPU 小时。

运行大模型几乎可以归结为两个因素:内存带宽和计算能力,足够高的内存带宽才能“提供”计算,足够强大的计算才能跟上内存提供的数据。对于个人开发者来说,可能并没有完美设备,因此很开发者也在寻求更容易配置的量化模型版本。

也有开发者支招:可以在 64GB RAM 的 Macbook M1/M2 上运行 70B 模型。

开发者“tinco”表示,“据我所知,市场上没有其他笔记本电脑具有与 64GB MBP 一样多的 VRAM。您可以使用两个 3090 制成一台 Linux 台式计算机,将它们连接在一起提供 48GB 的 VRAM。这样显然可以运行 4 位量化的 6k 上下文 70B Llama 模型。”Tinco 进一步表示,人们推荐 Macbook 是因为它们是一种相对便宜且简单的方法,可以将大量 RAM 连接到加速器上。

Tinco 提醒道,这些是模型的量化版本,因此它们不如原始 70B 模型好,尽管人们声称它们的性能非常接近原始性能。要在不进行量化的情况下运行,则需要大约 140GB 的 VRAM。这只有一台 NVidia H100(不知道价格)或两台 A100(每台 18,000 美元)才能实现。

也有开发者分析称,理论上,单个 Nvidia 4090 能够以“可用”速度运行量化的 70B 模型。Mac 硬件在人工智能方面如此强大的原因是因为统一的架构,这意味着内存在 GPU 和 CPU 之间共享。还有其他因素,但本质上归结为每秒代币的优势。用户可以在内存带宽较低的旧 GPU 上运行这些模型中的任何一个,但每秒的令牌速度对于大多数人认为“可用”的速度来说太慢了,而且必要的量化可能会明显影响质量。

结束语

代码生成一直既被开发者叫好又被吐槽,即使是 ChatGPT 和 Copilot,因为虽然可以提效,但是质量问题一言难尽。

有开发者在 Hacker News 上表示,“两个月后我取消了订阅(Copilot),因为我花了太多的精力去检查所有代码并修复所有错误。当尝试处理任何不琐碎的或与 SQL 有关的事情时(即使我用整个模式预先加载它),它基本上是无用的。自己编写所有内容要省力得多,因为我实际上知道自己想写什么,并且修复自己的错误比修复机器人的错误更容易。”

使用 ChatGPT 的“ben_w”表示,“我对它( ChatGPT)的功能感到惊讶,但即便如此,我也不会称其为‘好代码’。我将它用于 JavaScript 编程,因为虽然我可以阅读(大部分) JS 代码,但过去 14 年我一直专业从事 iOS 工作,因此不知道什么是浏览器领域的最佳实践。尽管如此,我得到工作代码后,我也可以发现它产生了错误的选择和(看起来)奇怪的东西。”

类似的问题我们也在之前的文章 《代码屎山噩梦加速来袭,都是 AI 生成代码的锅?》 中讨论过。最新研究也表示,GitHub Copilot “代码质量面临下行压力”,代码可维护性的趋势令人不安。

开源领域一直在进行生成更好代码的研究。在 Hugging Face 的“Big Code Models Leaderboard”上,也有很多被开发者认可的模型。

比如北京大学推出了⼀系列从 1.3B 到 33B 的  DeepSeek-Coder 开源代码模型。DeepSeek-Coder 基于 2 万亿个代币上从头训练,都使用 16K 的窗口大小和额外的填空任务在项目级代码语料库上进行预训练,以支持项目级代码补全和填充。测评结果表明,DeepSeek-Coder 不仅在多个基准测试中实现了开源代码模型中最先进的性能,⽽且还超越了 Codex 和 GPT-3.5 等现有的闭源模型。

对于有开发者提出“当前 SOTA 本地代码生成模型是什么”的问题,可能现在还没有标准答案,大家还在努力想办法优化现在模型,现在远不是终点。

你心中的 SOTA 代码生成模型是什么?欢迎评论区说出你的使用感受和经验!

相关链接:

Meta 在研究论文中披露了 Code Llama 的开发细节以及基准测试的具体步骤,感兴趣的用户可以查看:

https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/

感兴趣的朋友可以在 GitHub 上参阅 Code Llama 训练 recipes:

https://github.com/facebookresearch/codellama

参考链接:

https://ai.meta.com/blog/code-llama-large-language-model-coding/https://news.ycombinator.com/item?id=39178886

点击底部阅读原文访问 InfoQ 官网,获取更多精彩内容!

今日好文推荐

鹅厂年终开奖冲上热搜;PayPal裁员赔偿N+6;梁汝波不满字节2023年才讨论GPT;“Linux中国”停止运营 | Q资讯

刚上线就崩了?字节版 GPTs 征战国内市场:无需编码,快速创建 AI 聊天机器人

Taylor Swift 身陷不雅照风波:AI 越强、Deepfakes 越猖狂,微软和推特们无法推责

Linus 开喷谷歌内核贡献者:你的代码是垃圾!网友:我们熟悉的 Linus 回来了

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
小扎官宣Code Llama重量级更新,新增70B版本,但还有能力限制讯飞医疗递交IPO申请;Meta发开源大模型Code Llama 70B;马化腾称两年内不会有纯原生AI大应用丨AIGC大事日报男子吃自助餐时,吃掉3斤猪蹄,喝了30瓶豆奶,老板让他不要来了,男子:玩不起就别开店是不是玩不起?Costco网购衣服7折:一边骂骂咧咧一边下单买UGG背景提升学员|喜报!新国立、康奈尔、港大、哥大、约翰霍普金斯、港科大、华威、圣路易斯华盛顿offer来了!首个国产开源MoE大模型来了!性能媲美Llama 2-7B,计算量降低60%我编程零基础,但开发了一个自己的 AI 应用 | 极客时间Meta is working on an AI wristband that can read brain signa美国养家“最好”和“最糟”的州,加州排名如何?《跌宕起伏心灵煎熬的14天》(6) 【自证清白】Code Llama 70B霸榜3连发,练习5个月击败GPT-4!小扎LeCun亲自官宣上新快消外企社招 | Lagardère拉格代尔,世界三大旅行零售商之一,百年外企,平均月薪17.2k,0经验可投,留学生有优势马斯克称每年要投资数十亿美元在AI硬件上;Meta发布开源大模型Code Llama 70B丨AIGC日报「老头乐」被禁了,但开它的人还在马斯克正式开源 Grok-1,成为全球最大的开源大模型Stability AI发布全新代码模型Stable Code 3B!媲美70亿Code Llama,没GPU也能跑毛主席《水调歌头,才饮长沙水..》读着玩开源日报 | 构建一个类似英伟达CUDA的开源生态;“AI程序员”大杀四方,人类程序员开始反击;Podman 5.0发布最让我满意的客服,台湾的”问讲“们凯特自曝确诊癌症,阴谋论者和嘲讽者纷纷道歉!英国王室今年太难了…LLM性能最高60%提升!谷歌ICLR 2024力作:让大语言模型学会「图的语言」童年故事(10):玩冲锑招人嫉恨新开源之王来了!1320亿参数,逻辑数理全面打赢Grok,还比Llama2-70B快1倍开发者阵营分化,.NET 开源生态系统如何走向未来?清华系2B模型杀出,性能吊打LLaMA-13B,170万tokens仅需1块钱!集体出走的Stability AI 发布全新代码大模型,3B以下性能最优,超越Code Llama和DeepSeek-Coder哄女友的“哄哄模拟器”火了,24小时花10亿token!但开发者愁了小米SU7试驾者纷纷实测:自动驾驶准确,稍微有点“怂”!​清明节前AI复活亲人成热门生意:几十元到上百元不等丨AI周报张郎郎:\'血统\'鬼魅始终笼罩中国开源!知名游戏开发者云风开源自研游戏引擎 Ant Engine上海率先打响AI开发者争夺战!大咖云集,先锋毕至 | 2024全球开发者先锋大会微软OpenAI计划1亿美元投向人形机器人!网友纷纷喊话马斯克小扎宣布进军AGI!Meta正在训练Llama 3,目标是60万块H100!模型仍会开源普京无悬念连任背后:反对者纷纷润出俄罗斯2B小钢炮碾压Mistral-7B,旗舰级端侧模型炸场开年黑马!1080Ti可训,170万tokens成本仅1元碾压前辈!Meta发布“最大、性能最好”的开源Code Llama 70B,但开发者纷纷喊穷:玩不起!
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。