Redian新闻
>
英伟达最强通用大模型Nemotron-4登场!15B击败62B,目标单张A100/H100可跑

英伟达最强通用大模型Nemotron-4登场!15B击败62B,目标单张A100/H100可跑

公众号新闻



  新智元报道  

编辑:桃子
【新智元导读】许久未更新大模型的英伟达推出了150亿参数的Nemotron-4,目标是打造一个能在单个A100/H100可跑的通用大模型。

最近,英伟达团队推出了全新的模型Nemotron-4,150亿参数,在8T token上完成了训练。

值得一提的是,Nemotron-4在英语、多语言和编码任务方面令人印象深刻。

论文地址:https://arxiv.org/abs/2402.16819

在7个评估基准上,与同等参数规模的模型相比,Nemotron-4 15B表现出色。

甚至,其性能超过了4倍大的模型,以及专用于多语言任务的模型。

如今LLM已经非常多了,英伟达新发布的语言模型,有何不同?

打造最强通用LLM,单个A100/H100可跑


最近发表的LLM研究受到了Chinchilla模型「缩放定律」的启发——给定固定计算预算,数据和模型大小一同优化。

而过去,研究主要针对模型大小进行缩放。

研究表明,给定两个数据分布类似的IsoFLOP GPT模型,一个是在1.4万亿token上的65亿参数模型,另一个是3000亿token上的2800亿参数模型。

显然,65B的模型在下游任务上的准确性更高。

从推理的角度来看,将计算分配给更多数据的训练,而不是增加模型大小特别有吸引力,可以减少延迟和服务模型所需的计算量。

因此,语言建模训练工作的主要焦点已转向从CommonCrawl等公共资源中,收集高质量的数万亿token数据集。

对此,英伟达研究人员提出了Nemotron-4 15B,来延续这一趋势。

具体来说,Nemotron-4 15B是在8万亿个token,包括英语、多语种、编码文本的基础上进行训练。

英伟达称,Nemotron-4 15B的开发目的:

成为能在单个英伟达A100或H100 GPU上运行的最佳「通用大模型」。

架构介绍


Nemotron-4采用了标准的纯解码器Transformer架构,并带有因果注意掩码。

核心的超参数,如表1所示。

Nemotron-4有32亿个嵌入参数和125亿个非嵌入参数。

研究人员使用旋转位置编码(RoPE)、SentencePiece分词器、MLP层的平方ReLU激活、无偏置项(bias terms)、零丢失率,以及无限制的输入输出嵌入。

通过分组查询关注(GQA),可实现更快的推理和更低的内存占用。

数据

研究人员在包含8万亿个token的预训练数据集上训练Nemotron-4 15B。

分为三种不同类型的数据:英语自然语言数据(70%)、多语言自然语言数据(15%)和源代码数据(15%)。

英语语料库由来自各种来源和领域的精选文档组成,包括网络文档、新闻文章、科学论文、书籍等。

代码和多语言数据包括一组多样化的自然语言和编程语言。

研究人员发现,从这些语言中适当地采样token是在这些领域获得高准确度的关键。

此外,研究人员分别在图3和图4中共享预训练数据集中用于代码和多语言标记的分布。

预训练

Nemotron-4使用384个DGX H100节点进行训练。每个节点包含8个基于英伟达Hopper架构的H100 80GB SXM5 GPU。

在执行无稀疏性的16位浮点(bfloat16)算术时,每个H100 GPU的峰值吞吐量为989 teraFLOP/s。

每个节点内,GPU通过NVLink和NVSwitch(nvl)连接;GPU到GPU的带宽为900 GB/s(每个方向450 GB/s)。

每个节点都有8个NVIDIA Mellanox 400 Gbps HDR InfiniBand主机通道适配器(HCA),用于节点间通信。

研究人员使用8路张量并行和数据并行的组合来训练模型,还使用了分布式优化器,将优化器状态分片到数据并行副本上。随着批大小的增加,数据并行度从96增加到384。

表2总结了批大小提升的3个阶段,包括每次迭代时间和模型FLOP/s利用率(MFU)。MFU量化了GPU在模型训练中的利用效率。训练大约在13天内完成。

再训练

与最近的研究类似,研究人员发现在模型训练结束时,切换数据分布和学习率衰减时间表,可以极大地提高模型质量。

具体来说,在对整个8T预训练数据集进行训练之后,使用相同的损失目标,并对与预训练token相比的较少的token进行持续训练。

在这一额外的继续训练阶段,利用两种不同的数据分布。

第一个分布是,从持续训练期间大部分token采样。它利用在预训练期间已经引入的token,但其分布将更大的采样权重放在更高质量来源上。

第二个分布,引入了少量基准式对齐示例,以更好地让模型在下游评估中回答此类问题,同时还增加来自模型性能较低区域的数据源的权重。

实验结果


研究人员在涵盖各种任务和领域的下游评估领域评了 Nemotron-4 15B。

常识推理

作者使用LM-Evaluation Harness在所有上述任务中评估Nemotron-4 15B。

表3显示了Nemotron-4 15B在这组不同的任务中实现了最强的平均性能。

热门的综合基准

从表4可以看出,Nemotron-4 15B在现有模型中获得了BBH的最佳分数,增长了近7%。

此外,Nemotron-4在BBH基准测试中明显优于LLaMA-2 70B模型,其中LLaMA-2 70B的得分为51.2,Nemotron-4的得分为58.7。

Nemotron-4 15B另外还获得了极具竞争力的MMLU分数。

数学和代码

表5重点介绍了Nemotron-4 15B在数学和代码任务上的性能。

具体来说,在数学推理上,Nemotron-4 15B表现强劲,得分与Gemma 7B相似,但落后于Baichuan-2和QWEN等模型。

在代码任务中,Nemotron-4的性能与QWEN 14B相当,但略落后于Gemma 7B。

在这两种类型的任务中,Nemotron-4 15B的性能均优于Mistral 7B和LlaMA-213B/34B。

几乎所有类似规模的开放模型都只根据Python相关任务的性能来确定其代码能力,而忽略了对其他编程语言能力的评估。

在表6中,展示了Nemotron-4 15B在Multiple-E基准上的结果,涉及11种不同的编程语言。

结果发现,Nemotron-4 15B在各种编程语言中都有很强的编码性能,平均性能优于Starcoder和Mistral 7B。

研究人员特别强调了Nemotron-4 15B在Scala、Julia和R等低资源编程语言上的卓越性能。

多语言

分类

在表7中,可以清楚地看到Nemotron-4在所有模型中实现了最佳性能,在4次设置中实现了近12%的改进。

生成

表8显示Nemotron-4 15B实现了最佳性能。

令人印象深刻的是,Nemotron-4 15B能够显著改进下一个最佳模型PaLM 62B-cont。

表9显示了MGSM上的性能,进一步证明了Nemotron-4 15B令人印象深刻的多语言能力。

在这项评估数学和多语言能力交集的挑战性任务中,Nemotron-4 15B在比较模型中实现了最佳性能,并且比最接近的分数提高了近30%。

机器翻译

如表10所示,Nemotron-4 15B的性能远远优于LLaMA-2 13B和Baichuan-2 13B,性能分别提高了90.2%和44.1%。

Nemotron-4 15B不仅在中文翻译成英文方面表现出色,而且在中文直接翻译成其他语言方面也能取得令人印象深刻的效果。

这种能力凸显了Nemotron-4 15B对广泛的自然语言的深刻理解。

参考资料:
https://arxiv.org/abs/2402.16819



微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
2B小钢炮碾压Mistral-7B,旗舰级端侧模型炸场开年黑马!1080Ti可训,170万tokens成本仅1元黄仁勋刚刚发布,英伟达最强GPU B200,首次采用Chiplet?【买房】Newton公寓| 2b1.5b | 1,190sqft | 标价62W | 理想自住/投资房金融业采用大模型,是“用大炮轰蚊子”吗?| 盘点张寿臣的单口相声《小神仙》全球首个自主进化多模态MoE震撼登场!写真视频击败Sora,人大系团队自研底座VDT英伟达获5亿美元天价大单!印数据中心一口气买下16000块H100/GH200免中介费和一个月房租|Trac75|接受本科生 | 近BU豪华公寓折后2b2b 3616 3b2b 3735.深夜炸场!英伟达发布全球最强 AI 芯片,性能暴涨 30 倍,老黄才是这个时代的乔布斯击败OpenAI,权重、数据、代码全开源,能完美复现的嵌入模型Nomic Embed来了全球最大开源模型再刷爆纪录!4800亿参数MoE击败Llama 3、Mixtral无中介费|随时入住|Allston高级公寓个人转租|主卧带独卫,限女生 ,2b2b,拎包入住,租金1500清华系又造大模型标杆!2B规模干翻Mistral-7B,超低成本为AI Agent护航英伟达抛出年度AI杀器:史上最强芯片,还有机器人大模型4000万蛋白结构训练,西湖大学开发基于结构词表的蛋白质通用大模型,已开源国内首个开源千亿参数MoE大模型来了!性能超Grok-1,单张GPU可跑鸿发超市「2000 万美元」买下82街前Walmart超市!开设第4家Hông Phát分店!小扎宣布进军AGI!Meta正在训练Llama 3,目标是60万块H100!模型仍会开源1元=1700000tokens!清华系发布国产Mistral仅2B,老手机都带得动,GitHub一天斩获300+星史上首个100%开源大模型重磅登场!破纪录公开代码/权重/数据集/训练全过程,AMD都能训英伟达最疯狂的一年,暴涨240%许家印组织造假被罚4700万;马斯克开源大模型Grok-1;侯毅正式卸任盒马CEO;英伟达推出最强AI芯片...Mamba超强进化体一举颠覆Transformer!单张A100跑140K上下文独家丨周鸿祎x朱啸虎:没10亿美金闲钱,别碰通用大模型英伟达卷疯了!最强芯片炸裂AI界,老黄还拿出机器人大模型只抵制洋节日?马列主义的洋货更该抵制今日arXiv最热NLP大模型论文:微软:用大模型分析用户满意度,让智能系统更善解人意99.9亿! 上海豪宅又现日光盘; 葛兰被抓? 回应来了; 创纪录! 七巨头蒸发9500亿美元, 英伟达最惨【首发】天鹜科技完成数千万元Pre-A轮融资,加速蛋白质工程通用大模型商业落地国粹之一 打牌苹果加入开源大战,官宣端侧小模型OpenELM!参数2.7亿到30亿一台M2 Mac可跑沒有實際控制人的2024对话联想中国区总裁刘军:全栈智能布局已有7年,联想不会做通用大模型【免中介费】Brookline租房| 栗子山公寓 | 2b1.5b | 人均$1,800/即刻入住 | Longwood双林奇案录第三部之天使刺客: 第二节
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。