Redian新闻
>
全球首个自主进化多模态MoE震撼登场!写真视频击败Sora,人大系团队自研底座VDT

全球首个自主进化多模态MoE震撼登场!写真视频击败Sora,人大系团队自研底座VDT

公众号新闻



  新智元报道  

编辑:编辑部
【新智元导读】人大系初创公司智子引擎发布的全新多模态大模型Awaker 1.0,直接迈向了AGI!它是业界首个真正实现自主更新的大模型,在写真视频效果上,居然击败了Sora。

在4月27日召开的中关村论坛通用人工智能平行论坛上,人大系初创公司智子引擎隆重发布全新的多模态大模型Awaker 1.0,向AGI迈出至关重要的一步。
相对于智子引擎前代的ChatImg序列模型,Awaker 1.0采用全新的MOE架构并具备自主更新能力,是业界首个实现「真正」自主更新的多模态大模型。
在视觉生成方面,Awaker 1.0采用完全自研的视频生成底座VDT,在写真视频生成上取得好于Sora的效果,打破大模型 「最后一公里」落地难的困境。
Awaker 1.0是一个将视觉理解与视觉生成进行超级融合的多模态大模型。
在理解侧,Awaker 1.0与数字世界和现实世界进行交互,在执行任务的过程中将场景行为数据反哺给模型,以实现持续更新与训练;在生成侧,Awaker 1.0可以生成高质量的多模态内容,对现实世界进行模拟,为理解侧模型提供更多的训练数据。
尤其重要的是,因为具备「真正」的自主更新能力,Awaker 1.0适用于更广泛的行业场景,能够解决更复杂的实际任务,比如AI Agent、具身智能、综合治理、安防巡检等。

Awaker的MOE基座模型


在理解侧,Awaker 1.0的基座模型主要解决了多模态多任务预训练存在严重冲突的问题。
受益于精心设计的多任务MOE架构,Awaker 1.0的基座模型既能继承智子引擎前代多模态大模型ChatImg的基础能力,还能学习各个多模态任务所需的独特能力。
相对于前代多模态大模型ChatImg,Awaker 1.0的基座模型能力在多个任务上都有了大幅提升。
鉴于主流的多模态评测榜单存在评测数据泄露的问题,我们采取严格的标准构建自有的评测集,其中大部分的测试图片来自个人的手机相册。
在该多模态评测集上,我们对Awaker 1.0和国内外最先进的三个多模态大模型进行公平的人工评测,详细的评测结果如下表所示。
注意到GPT-4V和Intern-VL并不直接支持检测任务,它们的检测结果是通过要求模型使用语言描述物体方位得到的。
可以看到,Awaker 1.0的基座模型在视觉问答和业务应用任务上超过了GPT-4V、Qwen-VL-Max和Intern-VL,同时它在描述、推理和检测任务上也达到了次好的效果。
总体而言,Awaker 1.0的平均得分超过国内外最先进的三个模型,验证了多任务MOE架构的有效性。下面是几个具体的对比分析例子。
从这些对比例子可以看到,在计数和OCR问题上,Awaker 1.0能正确地给出答案,而其它三个模型均回答错误(或部分错误)。
在详细描述任务上,Qwen-VL-Max比较容易出现幻觉,Intern-VL能够准确地描述图片的内容但在某些细节上不够准确和具体。
GPT-4V和Awaker 1.0不但能够详细地描述图片的内容,而且能够准确地识别出图片中的细节,如图中展示的可口可乐。

Awaker+具身智能:迈向AGI


多模态大模型与具身智能的结合是非常自然的,因为多模态大模型所具有的视觉理解能力可以天然与具身智能的摄像头进行结合。
在人工智能领域,「多模态大模型+具身智能」甚至被认为是实现通用人工智能(AGI)的可行路径。
一方面,人们期望具身智能拥有适应性,即智能体能够通过持续学习来适应不断变化的应用环境,既能在已知多模态任务上越做越好,也能快速适应未知的多模态任务。
另一方面,人们还期望具身智能具有真正的创造性,希望它通过对环境的自主探索,能够发现新的策略和解决方案,并探索人工智能的能力边界。通过将多模态大模型用作具身智能的「大脑」,我们有可能大幅地提升具身智能的适应性和创造性,从而最终接近AGI的门槛(甚至实现AGI)。
但是,现有的多模态大模型都存在两个明显的问题:一是模型的迭代更新周期长,需要大量的人力和财力投入;二是模型的训练数据都源自现有的数据,模型不能持续获得大量的新知识。
虽然通过RAG和长上下文的方式也可以注入持续出现的新知识,但是多模态大模型本身并没有学习到这些新知识,同时这两种补救方式还会带来额外的问题。
总之,目前的多模态大模型在实际应用场景中均不具备很强的适应性,更不具备创造性,导致在行业落地时总是出现各种各样的困难。
智子引擎此次发布的Awaker 1.0,是世界上首个具有自主更新机制的多模态大模型,可以用作具身智能的「大脑」。
Awaker 1.0的自主更新机制,包含三大关键技术:数据主动生成、模型反思评估、模型连续更新。
区别于所有其它多模态大模型,Awaker 1.0是「活」的,它的参数可以实时持续地更新。
从上方的框架图中可以看出,Awaker 1.0能够与各种智能设备结合,通过智能设备观察世界,产生动作意图,并自动构建指令控制智能设备完成各种动作。
智能设备在完成各种动作后会自动产生各种反馈,Awaker 1.0能够从这些动作和反馈中获取有效的训练数据进行持续的自我更新,不断强化模型的各种能力。
以新知识注入为例,Awaker 1.0能够不断地在互联网上学习最新的新闻信息,并结合新学习到的新闻信息回答各种复杂问题。
不同于RAG和长上下文的传统方式,Awaker 1.0能真正学到新知识并「记忆」在模型的参数上。
从上述例子可以看到,在连续三天的自我更新中,Awaker 1.0每天都能学习当天的新闻信息,并在回答问题时准确地说出对应信息。
同时,Awaker 1.0在连续学习的过程中并不会遗忘学过的知识,例如智界S7的知识在2天后仍然被Awaker 1.0记住或理解。
Awaker 1.0还能够与各种智能设备结合,实现云边协同。
Awaker 1.0作为「大脑」部署在云端,控制各种边端智能设备执行各项任务。边端智能设备执行各项任务时获得的反馈又会源源不断地传回给Awaker 1.0,让它持续地获得训练数据,不断进行自我更新。
上述云边协同的技术路线已经应用在电网智能巡检、智慧城市等应用场景中,取得了远远好于传统小模型的识别效果,并获得了行业客户的高度认可。

现实世界的模拟器:VDT


Awaker 1.0的生成侧,是智子引擎自主研发的类Sora视频生成底座VDT,可以用作现实世界的模拟器。
VDT的研究成果于2023年5月发布在arXiv网站,比OpenAI发布Sora提前10个月。VDT的学术论文已经被国际顶级人工智能会议ICLR 2024接收。

视频生成底座VDT的创新之处,主要包括以下几个方面:

  • 将Transformer技术应用于基于扩散的视频生成,展现了Transformer在视频生成领域的巨大潜力。VDT的优势在于其出色的时间依赖性捕获能力,能够生成时间上连贯的视频帧,包括模拟三维对象随时间的物理动态。

  • 提出统一的时空掩码建模机制,使VDT能够处理多种视频生成任务,实现了该技术的广泛应用。VDT灵活的条件信息处理方式,如简单的token空间拼接,有效地统一了不同长度和模态的信息。同时,通过与时空掩码建模机制结合,VDT成为了一个通用的视频扩散工具,在不修改模型结构的情况下可以应用于无条件生成、视频后续帧预测、插帧、图生视频、视频画面补全等多种视频生成任务。

团队重点探索了VDT对简单物理规律的模拟,在Physion数据集上对VDT进行训练。

在下面的示例中,团队发现VDT成功模拟了物理过程,如小球沿抛物线轨迹运动和小球在平面上滚动并与其他物体碰撞等。同时也能从第2行第2个例子中看出VDT捕捉到了球的速度和动量规律,因为小球最终由于冲击力不够而没有撞倒柱子。

这证明了Transformer架构可以学习到一定的物理规律。

团队还在写真视频生成任务上进行了深度探索。该任务对视频生成质量的要求非常高,因为我们天然对人脸以及人物的动态变化更加敏感。鉴于该任务的特殊性,我们需要结合VDT(或Sora)和可控生成来应对写真视频生成面临的挑战。
目前智子引擎已经突破写真视频生成的大部分关键技术,取得比Sora更好的写真视频生成质量。
智子引擎还将继续优化人像可控生成算法,同时也在积极进行商业化探索。目前已经找到确定的商业落地场景,有望近期就打破大模型 「最后一公里」落地难的困境。
未来更加通用的VDT将成为解决多模态大模型数据来源问题的得力工具。
使用视频生成的方式,VDT将能够对现实世界进行模拟,进一步提高视觉数据生产的效率,为多模态大模型Awaker的自主更新提供助力。

结语


Awaker 1.0是智子引擎团队向着「实现AGI」的终极目标迈进的关键一步。
团队认为AI的自我探索、自我反思等自主学习能力是智能水平的重要评估标准,与持续加大参数规模(Scaling Law)相比是同等重要的。
Awaker 1.0已实现「数据主动生成、模型反思评估、模型连续更新」等关键技术框架,在理解侧和生成侧都实现了效果突破,有望加速多模态大模型行业的发展,最终让人类实现AGI。



微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
国产黑马一年肝出万亿参数MoE!霸榜多模态,剑指AGISora超逼真视频引恐慌!Nature刊文警示AI视频模型,或在2024年颠覆科学和社会史诗级大迁徙!悉尼“观鲸季”震撼登场!4万头座头鲸正在路上!识别细胞也能用大模型了!清华系团队出品,已入选ICML 2024 | 开源25年糖尿病患者被治愈,为全球首个自体再生胰岛移植成功病例 | 环球科学要闻AGI 加速降临!人大系多模态模型首次实现自主更新,写真视频生成力压 Sora音乐的桥梁,文化的盛宴:波士顿国际亚洲音乐节第三场本周六震撼登场!Stable Video 3D震撼登场:单图生成无死角3D视频、模型权重开放外企社招丨Dräger德尔格,行业全球领导者,15薪,六险一金,多样福利,偏爱留学生京妞又造假了!婶可忍, 叔不可忍?(真相截图)北京内推 |​ 商汤研究院基础多模态大模型组招聘多模态方向算法实习生需要什么才能成为春天AI生图可“量身定制”了,华为&清华联手打造个性化多模态生成方法PMG中国版Sora震撼登场,原生16秒直出超清视频!国产黑马火了,世界模型签约多个大客户李未可科技古鉴:发布自研多模态大模型WAKE-AI,三大优化让AI眼镜交互体验升级 丨GenAICon 2024凶猛的装甲收割机:重型武直震撼登场,一分钟干掉16辆敌坦克清华开源全球首个基于U-ViT的多模态扩散大模型UniDiffuser智云功率王G300震撼登场丨超频光影 轻松演绎三星组百人团队攻HBM,势要击败SK海力士全球最大开源模型再刷爆纪录!4800亿参数MoE击败Llama 3、Mixtral​Gemini终于赢了GPT-4o!Video-MME首个视频多模态基准来了!Apple多模态最新工作4M-21:搞定21种模态!刷新多个SOTA!人大系多模态模型迈向AGI:首次实现自主更新,写真视频生成力压SoraCVPR 2024 | 北大&电子科大提出RCBEVDet:毫米波雷达-相机多模态的感知架构AI早知道|元象开源首个多模态大模型XVERSE-V;信通院发布国内首个汽车大模型标准【求职战报】全球金融交易平台Deutsche Börse Systems销售运营面试邀约!获千万级天使轮融资,华为系团队以AI大模型改造用工模式丨早起看早期可恶!为追$425餐费 纽约华人餐馆老板被打到做开颅手术 目前仍无法自主进食刚买的榨汁机又坏了女主播卖车送福利;假提豪车;普利司通的忧伤;医美直播凉凉中国版 Sora 来了!一键生成 16 秒 1080P 视频,清华系团队能对标 OpenAI 吗?《惦记》&《祝你祝你》Meta为社交媒体数据工具CrowdTangle增添安全功能;集成16个类脑器官,全球首个生物计算平台上线丨AIGC日报曝谷歌Python团队全员被裁;清华系团队“国产Sora”:视频突破16秒;“社恐”周鸿祎:喊话贾跃亭、雷军送自己车|AI周报英伟达最强通用大模型Nemotron-4登场!15B击败62B,目标单张A100/H100可跑
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。