Redian新闻
>
智能体DS-Agent基于案例推理,让GPT-4数据科学任务接近100%

智能体DS-Agent基于案例推理,让GPT-4数据科学任务接近100%

公众号新闻
机器之心专栏

机器之心编辑部

基于案例的推理助力大模型智能体挑战自动化数据科学任务,吉大、上交和汪军团队发布专注于数据科学的智能体构建框架 DS-Agent。


在大数据时代,数据科学覆盖了从数据中挖掘见解的全周期,包括数据收集、处理、建模、预测等关键环节。鉴于数据科学项目的复杂本质以及对人类专家知识的深度依赖,自动化在改变数据科学范式方面拥有极大的发展空间。随着生成式预训练语言模型的兴起,让大语言模型智能体处理复杂任务变得越来越重要。

传统的数据处理和分析大多依赖专业的数据科学家,费时费力。如果能够让大语言模型智能体扮演数据科学家的角色,那么除了能够为我们提供更高效的洞察和分析,还可以开启前所未有的工业模式和研究范式。

这样一来只要给定数据任务需求,专注于数据科学的智能体就可以自主地处理海量数据,发现隐藏在数据背后的模式和趋势。更广阔地,可以提供清晰模型构建的策略和代码,调用机器进行模型部署推理,最后利用数据可视化,使复杂的数据关系一目了然。

近期,吉林大学、上海交通大学和伦敦大学学院汪军团队合作提出了 DS-Agent,这一智能体的角色定位是一名数据科学家,其目标是在自动化数据科学中处理复杂的机器学习建模任务。技术层面上,团队采用了一种经典的人工智能策略 —— 基于案例的推理(Case-Based Reasoning,CBR),赋予了智能体 “参考” 他山之石的能力,使其能够利用以往解决类似问题的经验来解决新问题。


  • 论文链接:https://arxiv.org/pdf/2402.17453.pdf
  • 代码链接:https://github.com/guosyjlu/DS-Agent
  • 论文题目:DS-Agent: Automated Data Science by Empowering Large Language Models with Case-Based Reasoning

研究背景

在自动化数据科学这种开放决策场景中,目前的大模型智能体(例如 AutoGPT、LangChain、ResearchAgent 等)即使搭配 GPT-4 也难以保证较高的成功率。其主要挑战在于大模型智能体无法稳定地生成可靠的机器学习解决方案,并且还面临着幻觉输出的问题。当然,针对数据科学这一特定场景对大模型进行微调似乎是一种可行的策略,但这同时引入了两个新问题:(1)生成有效的反馈信号需要基于机器学习模型训练,这一过程需要耗费大量时间才能积累足够的微调数据。(2)微调过程中需要执行反向传播算法,这不仅增加了计算开销,而且大幅度提升了对计算资源的需求。

在这种情况下,团队决定使用 Kaggle 这一关键资源。作为世界上最大的数据科学竞赛平台,它拥有由经验丰富的数据科学家社区贡献的大量技术报告和代码。为了使大模型智能体能够高效地利用这些专家知识,团队采用了一个经典的人工智能问题解决范式 —— 基于案例的推理。

基于案例的推理的核心工作机制是维护一个案例库来不断存储过往经验。当出现一个新问题时,CBR 会在案例库中检索相似的过往案例,并尝试复用这些案例的解决方案来解决新问题。随后,CBR 会评估解决方案的有效性并根据反馈修订解决方案,这一过程中的成功的解决方案会被增加到案例库中以供未来复用。

在此基础上,团队提出 DS-Agent,利用 CBR 使大模型智能体能够分析、提取和重用 Kaggle 上的人类专家见解,并根据实际的执行反馈迭代修订解决方案,从而实现面向数据科学任务的持续性能提升。


框架细节

总体上,DS-Agent 实现了两种模式,以适应不同的应用阶段和资源要求。

  • 标准模式(开发阶段):DS-Agent 采用 CBR 构建自动化迭代流程,这模拟了数据科学家在搭建和调整机器学习模型时的连续探索过程,通过不断的实验和优化以求达到最佳解决方案。
  • 低资源模式(部署阶段):DS-Agent 复用开发阶段积累的成功案例来生成代码,这大大减少了对计算资源和基座模型推理能力的需求,使得开源大模型解决自动化数据科学任务成为可能。


开发阶段中,给定一个新的数据科学任务,DS-Agent 首先从 Kaggle 中检索出与任务相关的人类专家知识,并在此基础上构建初步的解决方案。紧接着,它进入一个迭代循环,通过编程和调试来训练机器学习模型,以获得在测试集上的性能指标。这些反馈指标成为评价和改进解决方案的关键依据。DS-Agent 会根据这些指标对模型设计进行必要的修改,以寻求最优的模型设计。在这个过程中,那些最优的机器学习解决方案被保存在案例库中,为将来遇到类似任务时提供了参考。

部署阶段下,DS-Agent 的工作模式变得更加直接和高效。在这个阶段,它直接检索并复用经过验证的成功案例来生成代码,而无需再次从头开始探索。这样不仅降低了对计算资源的需求,使得 DS-Agent 能够快速响应用户的需求;还显著降低了对大模型基座能力的要求,以一种低资源的方式提供高质量的机器学习模型。

实验设置

我们收集了 30 种不同的数据科学任务,覆盖了三种主要数据模态(文本、表格和时间序列)以及两大机器学习核心问题(分类和回归),并设计了不同的评价指标来保证任务的多样性。


开发阶段实验结果

在开发阶段中,DS-Agent 使用 GPT-4 首次在数据科学任务中实现了 100% 的成功率;相比之下,DS-Agent 即使使用 GPT-3.5 也展现出了比最强基线 ResearchAgent 使用 GPT-4 时还要更高的成功率。


此外,DS-Agent 使用 GPT-4 和 GPT-3.5 时,分别在测试集评价指标中取得了第一和第二的成绩,显著优于最强基线 ResearchAgent。 


部署阶段实验结果

部署阶段中,DS-Agent 使用 GPT-4 时,取得了首次接近 100% 的一次成功率,同时将开源模型 Mixtral-8x7b-Instruct 的一次成功率从 6.11% 跃升到了 31.11%。


在测试集指标评估中,DS-Agent 使用 GPT-4 和 GPT-3 时,取得了第一和第二的成绩;然而遗憾的是,开源大模型 Mixtral-8x7b-Instruct 在 DS-Agent 的加持下仍然没有超越 GPT-3.5。

最后,我们对 DS-Agent 在两种不同模式下的 API 调用成本进行了分析。通过对比,我们发现在开发阶段,DS-Agent 分别对 GPT-4 和 GPT-3.5 进行调用时,单次成本分别是 1.60 美元和 0.06 美元。然而,在部署阶段,成本得到了显著降低:DS-Agent 单次使用 GPT-4 的成本下降至仅需 13 美分,而单次使用 GPT-3.5 的成本更是低至不足 1 美分。这意味着在部署阶段,与开发阶段相比,我们实现了超过 90% 的成本节省。


借助 DS-Agent,即便你不懂编程、没学过机器学习,也能轻松应对各种复杂的数据分析挑战,瞬间获得深入的业务洞察,进行有效的决策支持,优化策略,并预测未来趋势,从而使企业数据部门的工作效率有望得到大幅提升。试想一下,营销人员只需用自然语言描述需求,智能体就能快速生成用户画像和营销策略分析;金融分析师告别手动建模的繁琐,转而与智能体探讨市场趋势…… 这一切可能很快就会成为现实。当然,自动化数据科学还处于起步阶段,离规模化应用尚需时日。但 DS-Agent 的出现无疑为我们展现了一幅令人期待的未来图景。随着人工智能的不断发展,冗杂的数据分析工作有朝一日或将被 AI 接管,而人类则可以把更多时间放在洞见思考和创新决策之上。





© THE END 

转载请联系本公众号获得授权

投稿或寻求报道:[email protected]

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
波士顿咨询:2024数据价值网络研究报告扫码进群|《数据科学·机器学习求职实战营》第1节正课免费体验!FLAG数据科学家带你科学准备DS面试!阿里智能体“组装工厂”开源!0经验搞定上万Agent并发告别偏科,能玩转多模态、多任务、多领域的强化智能体终于来了GPT-4/Gemini大翻车,做旅行攻略成功率≈0%!复旦OSU等华人团队:Agent不会复杂任务规划吴恩达:别光盯着GPT-5,用GPT-4做个智能体可能提前达到GPT-5的效果红杉资本入局,马斯克的AI公司接近达成60亿美元融资;苹果发布基于开源训练和推理框架的语言模型OpenELM丨AIGC日报天道有常(19)马未都保持童心,避免大而空问题 法律是行为的底线,道德是内心的底线,一生要遵循 一开始不要指责,再分析智能体技术发展趋势:李鹏谈大模型智能体与开放领域融合「专业智能体指导」让小模型学会数学推理!微调Mistral-7B实现86.81%准确率中国数据库流行榜冠军易主!!2024数据库分水岭提前到来?浓人,nèng死淡人加拿大家庭债务接近3万亿加元,占GDP的 130%以上明日直播|BAT资深数据分析师为你讲解2024数据求职如何成功上岸!懒倔混什么都是两面性 .离开跟不离开,只是每个人的选择. 合适自己最好.外企社招丨Dräger德尔格,行业全球领导者,15薪,六险一金,多样福利,偏爱留学生扫码进群|《数据科学·机器学习求职实战营》正课免费体验!FLAG数据科学家带你科学准备DS面试!ICLR 2024 | LLM Agent领域第一高分论文,全网Star数最高的多智能体框架求职干货 | 海归求职:数据(数据分析、数据科学、工程)冬樱 - 迟爱 三向完全自主性更进一步,清华、港大全新跨任务自我进化策略让智能体学会「以经验为鉴」日记OpenAI神秘搞事,GPT-4.5默默上线?推理碾压GPT-4网友震惊,奥特曼笑而不语吴恩达:多智能体协作是新关键,软件开发等任务将更高效百度文心智能体平台举办开发者沙龙,打造国内领先的智能体生态 | Q推荐马上开始|限免直播课《2024数据求职如何成功上岸》为你解读数据领域最新招聘趋势!hé bàng?hé bèng?三个Agent顶个GPT-4,基于开源小模型的那种|中大阿里联合出品求职干货|TikTok 2024 春招已开!海外求职:数据(数据分析、数据科学、工程)​eBioMedicine | 线粒体DNA片段的缺失或能在疾病症状出现之前预测人类帕金森疾病的发生数据科学|FLAG、咨询、投行大牛导师团队共创,简历精修 + 模拟面试 + 大厂内推,一站式搞定高薪大厂数据Offer!开源AGI智能体人人可养成:AGI对齐新思路,让智能体在人类世界中接受训练AI早知道|ChatGPT灰度测试多GPTs协同;新Bard逆袭GPT-4;百川智能发布Baichuan3今日arXiv最热大模型论文:Agent也疯狂!FoA方法对智能体做树结构搜索,超越ToT
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。