Redian新闻
>
咀嚼 SmCoIn5 之 4f 量子磁性 | Ising专栏

咀嚼 SmCoIn5 之 4f 量子磁性 | Ising专栏

公众号新闻

海归学者发起的公益学术平台

分享信息,整合资源

交流学术,偶尔风月



浪淘沙令·访雁栖湖

犹忆那年冬
燕阙空蒙
依稀塞外一飞鸿
俯瞰故池惊若客,不见山淙

又岸锦湖中
天水霜松
旧时溪沚拟行宫
休管凛寒风刺骨,孤影萍踪


Ising 作为外行,在写此类痛痒不大的所谓“量子材料”科普文章时,一个无奈而将就之举,就是抓住“能标”和“对称性”这两个所谓的物理认知法则。基于它们,总是可以将计算得到和观测得到的奇异结果“圆滑”过去,不会丢丑太大。但这样的企图和手法,在遇到重费米子体系时,似乎不那么奏效。所谓重费米子体系,主要包括一些含有稀土或锕族元素 (带有未填满的 4f  5f 轨道的合金或化合物。不失一般性,这里就以“4f 电子”作为代表,包括那些依赖共价键合 (4f - s / p / d 轨道杂化的金属间化合物。诸如浙江大学袁辉球老师、中国科学院物理所杨义峰老师等,能够在这一领域挥斥方遒多年,其精神令人敬佩、其才华令人赞叹。反过来,Ising 如下议论的对错,不值得甄别,读者姑且茶余饭后随意浏览一二即可。


一般认为,量子材料的主题是过渡金属化合物,覆盖的主要论题之载体也是过渡金属化合物,似乎形成了某种定式。如果细细品味,其实不然,因为这些化合物之很大一部分都包含 4f / 5f 电子,虽然这一事实被有意无意地忽略。且不说包含 4f 的稀土乃是中国的优势资源,而非常高比例的量子材料,覆盖超导、庞磁电阻、多铁性、阻挫磁性、量子拓扑,都包含 f 电子,更不要提那个专门化的“重费米子”家族了。


在量子材料领域,重费米子体系遭遇的物理困难,似乎众所周知,无需在此再次絮叨。Ising 也曾经写过一些读书笔记,例如Kondo 无处不流传乃其中一篇。有兴趣的读者可浏览一二。欲了解更详细内涵,可参阅杨义峰老师他们那篇很出名的重费米子物理综述文章 [李宇等,物理学报 70, 017402 (2021), http://doi.org/10.7498/aps.70.20201418]Ising 在过去的科研生涯中也经常遭遇包含 f 电子的体系 (但不归类于重费米子),一般都远而避之、遇而绕之或淡化之。作为科普素材,这里不妨从较为熟悉的两类量子材料中梳理几点认识:



 1. 电子轨道形态和空间尺度的一般性展示。

(A) from https://socratic.org/questions/write-are-the-ground-state-electron-configurations-of-the-following-transition-m(B) https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Quantum_Mechanics/09._The_Hydrogen_Atom/Atomic_Theory/Electrons_in_Atoms/Electronic_Orbitals




(1) 过渡金属 d 轨道较为扩展,特别是 5d 轨道更为宽阔,如图 1(A) 所示。容易看出,3d 轨道的空间尺度已与 4f 轨道基本相当,而 5d 轨道尺度要大很多。物理人将 3d 电子和 4f 电子体系看作强关联体系的道理,即在如此。如果再考虑如图 1(B) 所示的 d 轨道与 f 轨道在形态上的差异,更可明白 f 轨道之局域,库伦排斥作用 (在位关联可能更强。因此,电子关联强度将大致按照 4f → 3d → 4d → 5d 顺序逐渐减弱,虽然体情况与轨道中存在的电子数目和轨道填充细节有关。


(2) 众所周知,在物理上要严格处理强关联体系的电子结构,不,甚至只是近似处理,较为困难。对如此局域的核外电子轨道,电子密度泛函这一方法在原理层次上就已算是近似了,处理 f 轨道就存在更大的不确定性。反过来幸运的是,电子轨道“花瓣”很多,实际空间占据更为局域,导致 f 电子与其它离子的轨道杂化 (键合相对偏弱。因此,很多物理人就先易后难,将 f 电子作为“单干户”扔到一边不做考虑,让它们处于游离状态或看成某种背景微扰。有意思的是,很多情况下,这种粗暴方式效果并不差。这种局域性,也导致 f 电子物理主要出现于很低温度端。超越这一温区,物理人基本能够将理论与实验很好对应起来。于是乎,物理人得以“偏安于一隅”很长一段时间。


(3) 在此偏安之外,量子凝聚态发展的主体分支,不管是拓扑量子物理、还是量子磁性,都在向轨道更为扩展的 4d / 5d 挺进,看起来更可以将 f 电子放在一边了。自旋 - 轨道耦合 SOC、阻挫磁性、狄拉克费米子、小带隙物理等大方向,似乎都较少讨论 f 电子的贡献。在这些体系费米面附近的能带结构中,偶尔有一些亮点 (或热点 hot spot) 和强度异常,可能与 f 电子有关,但整体而言那些能带拓扑、节线、嵌套、能隙开合等,都是偏安之花而一片鱼龙舞。


(4) 凝聚态物理的精髓,虽然也根植于量子力学和原子物理,但让人惊奇的当然还是安德森提拔到很高高度的那个演生物理。针对重费米子系统,这样的物理至少有两个重要表现,给予其电子结构、特别是 f 磁性以顽强的生命力。一个表现即 Kondo 效应,就如图 2(A) 所示的 Kondo screening,展示了稀磁金属合金中来自 s / p / d 轨道的载流子与f电子局域自旋之间的耦合,形成局域自旋单态 (singlet),从而削弱了交换耦合 (磁耦合和磁有序的趋势。这是自旋输运局域化而走向磁无序的原因。另一个表现,即所谓的 RKKY 效应,也就是图 2(B) 所示的 RKKY exchange,展示了这些体系中存在自旋长程耦合的一种模式,即巡游电子 / 载流子与局域 f 电子自旋通过虚拟交换,形成振荡,有利于长程耦合和磁有序 (主要是铁磁序)。虽然这两种模式是针对稀磁金属提出的,但在诸多重费米子体系中似乎也很显著,并在其中形成 Kondo 效应与 RKKY 效应之间通过载流子你争我夺的图像。如果再加上重费米子本身的输运特征,这些体系的物理大概就是如此了?!


(5) 这些物理,主要体现在金属、半金属和若干小带隙半导体中,主要体现在 f 电子与来自费米面附近 s / p / d 轨道巡游电子之间的相互作用上。正如 Rutgers 大学著名的凝聚态物理学者 Eva Andrei 在图 2(C) 所示的物理一般,大带隙的绝缘体难以介入其中,因为没有载流子,Kondo  RKKY 无法展示。在导电性很好普通金属中,因为载流子浓度太高或动能能标太大,Kondo  RKKY 亦无法展示。当然,电子系统也包括一些氧化物,其中电负性强的 O 离子参与,其 2p 轨道与临近的 f 轨道有很强杂化 (hybridization),导致电子结构呈现大能隙。此时,免不了出现对称破缺和磁相变,甚至在较高温度下就会形成反铁磁为主的磁有序。那些简单的稀土氧化物,如 EuO 和若干 R2O氧化物,就是如此。它们大多是反铁磁绝缘体。在这些氧化物中,诸如平带激发、拓扑电子和量子霍尔效应等低能标物理似乎就很难出现,更别说超导了极少见诸报道!


(6) 超越这些简单氧化物,也有一些 d 电子物理可将 4f 电子的贡献或效应渲染出来。Ising 熟悉的稀土锰氧化物 / 钴氧化物 / 镍氧化物等、第 II 类多铁性氧化物等,虽然主体磁性源于 d 电子,但 f 电子与 d 电子之间却存在依赖晶体结构的强耦合。这种耦合,很容易将原本只有 ~ 1 K 左右的 f 电子磁有序温度提升到 10 ~ 20 K,令人印象深刻。更进一步,自旋与 d 自旋间的耦合,使得 d 电子化合物呈现更丰富的阻挫物理,可能给磁电耦合、SOC、阻挫磁性等带来新的效应。



 2. 重费米子体系的若干物理性质:(A) Kondo 屏蔽;(B) RKKY 作用;(C) Kondo 效应的物理解释和特征温度;(D) 稀磁合金和常规超导体的电阻率随温度演化示意图。

(A) From https://phys.org/news/2021-11-behavior-kondo-cloud-superconductor.html(B) From M. M. Valizadeh et al, Inter. J. Mod. Phys. B29, 1550219 (2015), https://www.worldscientific.com/doi/abs/10.1142/S0217979215502197(C) From Eva Andrei, Graphene and 2D Materials Session, MRS Memorial, 2018, https://millie.pubpub.org/pub/evaandrei/release/1(D) From 李宇等,物理学报 70, 017402 (2021), http://doi.org/10.7498/aps.70.20201418




Ising 在这里洋洋洒洒“卖弄”读书心得,都是为了铺垫重费米子物理的主题超导电性。正如杨义峰老师他们总结的,电子局域自旋与 s / p / d 巡游电子耦合形成的 Kondo 效应 (Kondo screening 屏蔽),是典型的局域自旋单态图像。这一图像与超导自旋单态配对库珀对有些形似 (当然毫无神似感),留给 Ising 这样的外行物理人以遐想。果若能够建立 Kondo  RKKY 之间相互竞争的规律,将对我们理解 4f 量子磁性和由此相关的演生效应、甚至是与库珀对的某种联系,都是一件不错的事。就这一点,即可激发起无穷的追逐!


要实现这一点,路途遥远,不妨一步一步来。以 Ising 的外行发挥,也许有一些目前可尝试的生长点:(a) 首先,要尽可能降低物理过程的能标,例如避免选择 O - 2p 轨道杂化的氧化物,以弱化能标、减小能隙。如此,才能在费米面附近的价带填充足够的载流子源。绝大部分重费米子体系都是此类合金或金属间化合物。(b) 其次,引入过渡金属离子以强化 f - d 轨道耦合杂化,提升可能的 Kondo 屏蔽温度。(c) 再次,强化自旋阻挫,抑制 RKKY 和可能的磁有序,追逐量子自旋液体态和超导态,等等。


事实上,超导人早就在重费米子体系中展示了诸如此类的物理,发现了若干重费米子超导体系,包括 UTe这样可能的铁磁三重态 (triplet state) 超导体系。这些结果刺激了物理人去寻找更多重费米子超导。最近受关注的体系之一,即是 115 稀土金属间化合物,特别是 Ce 基金属间化合物。对这一家族及相关超导物理感兴趣的读者,可以上网寻找一些最新的综述文献,包括杨义峰老师他们的那篇综述。


这里,姑且将本文目标集中到 RCoIn系列中,包括 SmCoIn5LaCoIn CeCoIn5。就超导电性而言,对 CeCoIn的研究报道最多,包括对单离子物性、晶体场、强关联和 SOC、电子配对可能机制等方面的研究。回到重费米子性质,物理人的理解是,这些体系展现了较为显著的 Kondo 效应,而 RKKY 的贡献退而次之,因此基态是非磁序的,与能够观测到超导电性的物理事实一致、物理上也合理。


然而,有趣的是,SmCoIn却很不一样,展示了很强的磁有序趋势,在低温段出现了几次反铁磁相变,Neel 温度分别是:TN,1 ~ 11 KTN,2 ~ 8 KTN,3 ~ 6 K。注意到,Sm3+ 核外轨道是 4f5S = 5/2L = 5J = 5/2,而 Ce3+ 核外轨道是 4f1S = 1/2L = 3J = 5/2,它们的交换耦合量子数 J 是一样的。基于对晶体结构、晶体场和电子能级填充的分析理解,SmCoIn应该展现与 CeCoIn类似的电子结构和磁性。实验结果当然是让人大跌眼镜:它们在磁性行为上如此不同,意味着试图从这一系列中去理解量子磁性、进而取理解其中的超导配对,在思路上有所不足。


来自瑞士那个著名的 Paul Scherrer Institut (PSI) 之凝聚态物理名家 Michel Kenzelmann 教授带领其诺大合作团队,最近对这一问题发生兴趣:是何原因导致对 CeCoIn5  磁性的理解却在 SmCoIn这里出现了问题!这一团队一向以实验和理论计算紧密结合开展工作而闻名,他们有良好的角分辨光电子能谱 (ARPES) 探测手段和长期积累的关联电子第一性原理计算的积累,包括密度泛函 + 动力学平均场理论 (DFT + DMFT) 这样的强关联高端计算方法,承接这一课题看起来十拿九稳。



 3. SmCoIn的晶体结构、轨道占据态、费米面附近电子结构的实验与计算结果 (A)  ARPES 测量谱之 EB- kx 截面图 (B)。详细解读可访问文尾给出的文献链接 (免费下载)




Ising“认真”拜读了他们最近刊发在npj QM上的文章 (文献信息文尾展示),进行了肤浅的梳理,部分结果被提取集成于图 3 中。如下是几点读书体会:


(1) 对此类稀土基化合物,物理人一般都预期其中存在典型的 RKKY 金属输运行为,低温端出现磁有序不难理解。此时,通过过渡金属 d 电子 (如这里的 Co2+ In-1 离子参与的轨道杂化,引入 Kondo 屏蔽,压制 RKKY 和磁有序,在物理上还算合理和切实可行。这里出现巨大不同,意味着一定存在隐含未知的作用或过程。


(2) Kenzelmann 教授他们对 SmCoIn展开细致的 ARPES 谱学探测。至少在温度 T = 12 K 处得到的数据展示出,Sm 离子的 4f 电子是局域的,参与轨道杂化的部分很小,对费米面附近能带的贡献应该也很小。或者说,整个布里渊区内,这一体系的电子结构与 CeCoIn几无不同,甚至说吻合得特别好!OK,如此,Kondo 屏蔽效应应该很强,不应该在如此靠近的 TN,1 ~ 11 K 处出现反铁磁序。


(3) 第一性原理计算显示,计算结果与 ARPES 观测结果在大模样上几乎完全吻合,电子关联强度 (U) 达到 ~ 6.0 eV,足见 Sm  4f 电子关联之强大。这一结果与 CeCoIn5 和其它类似体系的观测结果一致。从这个意义上,SmCoIn的磁有序基态很难被理解。这一团队看起来很有经验,他们比对计算和实验结果,注意到 Sm3+  f 电子束缚能 (binding energy) 大约也是 ~ 6.0 eV。也就是说,Sm 离子的第二能带 (second band) 恰好位于 E - EF ~ - 6.0 eV 之上约 6.0 eV处,也就是位于费米能 E不远处。这一能带似乎对应于 Sm2+ 价带而不是 Sm3+ 价带,显示出存在 Sm2+ 的中间过渡态并参与成键,从而与费米面附近的 p / d 轨道提供的载流子形成 RKKY 物理,压制 Kondo 屏蔽效应。果若如此,实验看到的 TN,1 ~ 11 KTN,2 ~ 8 KTN,3 ~ 6 K 三处反铁磁相变,其背后原因似乎就水到渠成了。


(4) Kenzelmann 他们认为这样的强势 argument 是合理的。除了他们的计算证据外,在其它一些重费米子金属间化合物也存在类似效应。事实上,即便是从大学化学角度去看,Sm / Co / In 这些电负性差别不大的离子之间杂化键合及电子转移,不可能是完全的,出现中间价态的可能性不低。


(5) 显然,如此泛泛议论是不够的,总需要一些证据支撑。首先,基于理论计算与 ARPES 谱学数据之间良好的一致性,他们细致分析计算结果,的确在布里渊区中“看到”了局域 f 电子与载流子杂化后形成的“热点 (hot spots)”,而类似的“热点”也存在于 CeCoIn DFT  DMFT 计算结果中,甚至在 ARPES 测量谱中也能看到痕迹。在此启示下,再去细致看 SmCoIn ARPES 谱,似乎也能看到类似特征,虽然比较模糊。如此这般,有豁然开朗之感,说明在 SmCoIn Kondo 效应的确是显著的,并非 RKKY 物理独占鳌头。好吧,这是一个如此复杂的体系:Kondo  RKKY 各不相让,似乎在伯仲之间?


(6) 更深入的分析,也在布里渊区高对称 R 点周围提取到新的“热点”特征,显示 f 电子与 Co2+  d 电子之间有很强杂化,形成鲜明的 d - f 平带结构和 van Hove 奇异特征。虽然从实验数据中还不能提取到这一平带特征的可靠信息,但可以猜测这一平带特征在费米能附近起到了重要作用,必然给 RKKY 物理带来更多机会,从而解释实验看到的磁相互作用增强和磁有序出现。


简要梳理提炼这些结果,笔者似乎感觉到 Kenzelmann 教授他们心目中的图像,即 SmCoIn在费米面附近展示的、由 Sm - 4f  Co - 3d 轨道杂化形成的平带,显著提升了体系中的磁相互作用,最终导致反铁磁有序基态。在如此局域的重费米子体系中,形成与其孪生兄弟 CeCoIn如此不同的非局域磁有序态,令人疑惑或惊奇,也显示重费米子磁性的脆弱和 4f 电子对来自 s / p / d 轨道杂化的高度敏感性。只是,Ising 学识浅薄,没有真正领会到这种 Sm2+ / Sm3+ 之间的电荷转移如何具体实现?Co - 3d 轨道和 In - 5p 轨道起到的桥梁作用细节是什么?这些问题,似乎还没有明确答案!


无论如何,这些载流子运动被严重压制的重费米子体系,给物理人研究非常规超导电子配对机制背后的各种关联、阻挫和局域 / 巡游电子相互作用,提供了一个不可多得的试验平台。对这一平台布局和复杂性的全面理解,是发现超导新材料和新效应的充分前提。也就是说,如果能够将平台细节把玩于股掌之上,掌控非常规超导可能就易如反掌了?!谁知道呢,阿门!


雷打不动的结尾:Ising 乃属外行,描述不到之处,敬请谅解。各位有兴趣,还请前往御览原文。原文链接信息如下:


Flat-band hybridization between f and d states near the Fermi energy of SmCoIn5

David W. Tam, Nicola Colonna, Fatima Alarab, Vladimir N. Strocov, Dariusz Jakub Gawryluk, Ekaterina Pomjakushina & Michel Kenzelmann

npj Quantum Materials 9, Article number: 26 (2024)
https://www.nature.com/articles/s41535-024-00632-8


备注:

(1) 笔者 Ising,任职南京大学物理学院,兼职《npj Quantum Materials》编辑。

(2) 小文标题咀嚼SmCoIn54f量子磁性乃感性言辞,不是物理上严谨的说法。这里所谓“咀嚼”,只是针对 SmCoIn这一体系反常的 4f 磁性而进行的反复推敲和细致甄别,虽然并没有完备而很 sound 的最后结论。量子磁性的研究,本就是如此!

(3) 文底图片拍摄于燕京郊外怀柔的雁栖湖一角,展示了 APEC 蓝酒店就如这布里渊区中的一 hot spot 矗立在那里 (20231125)。小词 (20231125) 原本写冬日燕京郊外景色。看萧瑟渐浓、旭霞已远,燕山绵延、天水无隔,不妨想象眼前与超导研究景象之间有无联系。古今皆同,方有飞鸿惊是客,就如这里看到的 SmCoIn5 奇异磁性!

(4) 封面图片显示了 SmCoIn中观测到的 ARPES 谱,表明费米面附近的平带对磁基态的巨大影响。而这一现象在结构类似的115重费米超导化合物 CeCoIn中,就不明显。

扩展阅读

 

超导转变温度的“顶点” | Ising专栏

物理文章若染尘: 又是kagome | Ising专栏

交变磁性:磁性列车又一站? | Ising专栏

分数量子铁电:突破诺伊曼

本文系网易新闻·网易号“各有态度”特色内容

媒体转载联系授权请看下方


微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
随记(四)—— 写文章新潮流就是轨道矩流 | Ising专栏AMD 确认其 Zen5 锐龙 CPU 今年发布玻色量子发布量子计算“超强大脑”;OceanBase 4.3推出列式存储引擎,可实现秒级实时分析丨AIGC日报FCMConsulting:2024年第一季度全球旅行趋势报告伤你最深的人往往是你生命中最爱的人Looking Good: China’s Cosmetics Appeal to Overseas Markets国际首次!多校联合研制氮化镓量子光源,高集成光量子芯片成为可能加大加速裁减中国业务 法国轻奢集团SMCP今年最多关闭20%中国门店做好准备迎接“后量子密码学” 挑战如何将抗量子加密技术应用到现场AMD Zen5越来越近了!Linux GCC编译器已支持外企春招丨TSMC台积电2024春招火热进行中!半导体之父,行业TOP,行业前景好,留学生有优势镍基RP氧化物超导的晶格纹理 | Ising专栏SiC 对量子信息的好色之心 | Ising专栏给种子量子赋能,就能抗病抗灾还增产?有公司可给生活用品“量子赋能”,某“专家”:用农田照片就可以远程干预……笼目Holstein模型亦可CDW | Ising专栏Discovering Shanghai’s Jiangnan Culture Through Ancient TownsSandro、Maje的母公司SMCP一季度销售额下滑5%,大中华区闭店10家麦当劳CosMc’s登陆达拉斯,德州首家!买二送二!美东经典5日游:费城+华盛顿特区+尼亚加拉瀑布+纽约市区游+自由女神+时代广场 纽瓦克EWR接机+纽约送机APNFN5AMD“Strix Point”Zen5 处理器及 RDNA 3+ 产品今年发布历史轻轻拐了个弯潘建伟:百年量子,量子信息方兴未艾同济大学章小清/刘玲/房玉江团队Cell Metabolism发现胞内pH-Smad5信号通路控制胰岛素加工与分泌新机制Tomcat 调优总结(Tomcat自身优化、Linux内核优化、JVM优化)伦敦电台有关种族的辩论磁性点缀2D拓扑绝缘体 | Ising专栏高温超导尚未迈入BEC | Ising专栏ASML前CTO,加入ASMI三款新型超级计算机荣登Green500 List「懂物理」是具身智能核心!北大高逼真物理仿真,加持磁性微米级机器人登Nature子刊美股基本面 - 2024_01_31 * 晨报 * 2023年星巴克把更多新店开到了县城。矿业巨头淡水河谷去年铁矿石产量3.2华翊量子完成过亿元Pre-A轮融资,加速新型离子阱量子计算机研发谁说Marketing专业找不到工作?NYU学姐:Offer这不就来了?买二送二!美东经典5日游:纽约JFK/LGA接送机+费城+华盛顿特区+尼亚加拉瀑布+纽约市区游+自由女神+时代广场APNFN5F
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。