Redian新闻
>
AI行业买英伟达GPU,花的钱比赚的多17倍

AI行业买英伟达GPU,花的钱比赚的多17倍

科技

机器之心报道

编辑:泽南、小舟
有人却表示「很合理」。


搞 AI 大模型,实在太烧钱了。


我们知道,如今的生成式 AI 有很大一部分是资本游戏,科技巨头利用自身强大的算力和数据占据领先位置,并正在使用先进 GPU 的并行算力将其推广落地。这么做的代价是什么?


最近《华尔街日报》一篇有关明星创业公司的报道里给出了答案:投入是产出的 17 倍。



上个周末,机器学习社区围绕这个数字热烈地讨论了起来。


明星创业公司,几周估值翻倍:但没有收入


由知名投资人 Peter Thiel 支持的 AI 初创公司 Cognition Labs 正在寻求 20 亿美元估值,新一轮融资在几周之内就将该公司的估值提高了近六倍。


在如今火热的生成式 AI 领域里,Cognition 是一家冉冉升起的新星。如果你对它还不太熟悉,这里有它的两个关键词:国际奥赛金牌团队,全球首位 AI 程序员。


Cognition 由 Scott Wu 联合创立,其团队组成吸引眼球,目前只有 10 个人,但包含许多国际信息学奥林匹克竞赛的金牌选手。


Cognition Labs 的团队,CEO Scott Wu(后排身穿衬衣)只有 27 岁。


该公司在今年 3 月推出了 AI 代码工具 Devin,号称「第一位接近人类的 AI 程序员」,能够自主完成复杂的编码任务,例如创建自定义的网站。从开发到部署,再到 debug,只需要人类用自然语言给需求,AI 就能办到。


该新闻很快就登上了众多媒体的头条,也成为了热搜:



一些投资者表示,Devin 代表了人工智能的重大飞跃,并可能预示着软件开发的大规模自动化之路已经开启。


Cognition 虽然神奇,但它并不是个独苗。最近一段时间,生成式 AI 展现了超乎想像的吸金能力。去年 12 月,总部在法国的 Mistral 获得了 4.15 亿美元融资,估值达到 20 亿美元,比前一年夏天的一轮融资增长了大约七倍。 


3 月初,旨在挑战谷歌网络搜索主导地位的 AI 初创公司 Perplexity 也传来新一轮融资的消息,新估值有望达到近 10 亿美元。


而在这其中,作为一家旨在提供 AI 自动代码工具的创业公司,Cognition 去年才开始研发产品,目前并没有获得有意义的收入数字。今年初,在 Founders Fund 牵头的一轮 2100 万美元融资中,该公司的估值达到了 3.5 亿美元。据介绍,美国著名创业投资家、创办 Founders Fund 的 Peter Thiel 帮助领导了对 Cognition 的投资。


Peter Thiel 是全球畅销书《从 0 到 1:开启商业与未来的秘密》的作者,身家 71 亿美元。 


AI 编写代码看起来是一个有前途的大模型应用方向,其他提供类似产品的公司也看到了增长势头。上个季度,微软的代码工具 GitHub Copilot 用户数量增长了 30% 达到 130 万。Magic AI 是 Cognition 的竞争对手,2 月份获得了 1.17 亿美元的投资。国内也有一些代码生成自动化工具的初创企业,在生成式 AI 技术爆发后正在加速行业落地。


尽管出现了令人鼓舞的增长迹象,新公司的估值也不断膨胀,但这种快速发展也引发了人们对于出现泡沫的担忧 —— 到目前为止,很少有初创公司能够展示他们如何赚钱,想要收回开发生成式 AI 的高昂成本,似乎还没有门道。


在 3 月的一次演讲中,红杉资本(Sequoia Capital)有投资人估计 AI 行业去年为了训练大模型,仅在英伟达芯片上就花费了 500 亿美元,而换来的收入是 30 亿美元。


所以说,不算电费,开销是收入的 17 倍。



怎么样,今年还玩得起吗?


出路在哪


如今生成式 AI 技术的爆发,可谓验证了强化学习先驱 Richard S. Sutton 在《苦涩的教训》中的断言,即利用算力才是王道。黄仁勋两周前在 GTC 上也曾表示:「通用计算已经失去动力,现在我们需要更大的模型、更大的 GPU,需要将 GPU 堆叠在一起…… 这不是为了降低成本,而是为了扩大规模。」


但是在千亿、万亿参数量的大模型出现之后,通过提升规模来提升智能的方法是否还可以持续,是一个无法回避的问题。更何况现在的大模型已经很贵了。


华尔街日报的文章迅速引起大量讨论。有网友认为:「资本支出通常就是一次性的,而投资的收入却是日积月累的。生成式 AI 刚刚起步,其后续的经济收益可能是巨大的。」



但这种乐观的观点很快遭到反驳,另一位网友指出:「资本的支出的确是一次性的,但 GPU 会相对较快地贬值。」



为什么说 GPU 会快速贬值呢?虽然较老版本的 GPU 也不会停止支持 CUDA(英伟达推出的运算平台)等等,但与 H100 相比,V100 的能源消耗是巨大的浪费。



毕竟同样也是在 3 月份,英伟达已经发布了全新一代 AI 加速的 GPU Blackwell 系列。


近八年来,AI 算力增长了一千倍。


如果使用 V100 可以赚钱,那当然没问题。然而,如诸多媒体报道所述,对大多数公司来说,现阶段运行大模型并没有转化为实际收入。


另一方面,看看现在大模型每周都在推陈出新的状态,即使几年前的 GPU 在算力角度看可以接受,但大模型也在「快速折旧」。七年后的 AI,用现在的基础设施能支撑吗?


此外,如果一家公司花费大量成本来购买 V100,试图跟上生成式模型的趋势,那么可能就会出现研究团队雇佣成本不足的问题,那么最终可能还是无法做出有实际应用、经济收益的产品。



值得注意的是,许多 LLM 都需要额外的处理层来消除幻觉或解决其他问题。这些额外的层显著增加了生成式模型的计算成本。这不是 10% 的小幅增长,而是计算量增长了一个数量级。并且许多行业可能都需要这种改进。


图源:Reddit 用户 @LessonStudio


从行业的角度讲,运行生成式大模型需要大型数据中心。英伟达已经非常了解这个市场,并持续迭代更新 GPU。其他公司可能无法仅仅投资数百亿美元来与之竞争。而这些 GPU 需求还只是来自各大互联网公司的,还有很多初创公司,例如 Groq、Extropic、MatX、Rain 等等。



最后,也有人给出了这种夸张投入的「合理性」:坐拥大量现金的微软、谷歌和 Meta,他们因为反垄断法规而无法继续收购,因而只能选择将资金投入 AI 技术发展。而 GPU 支出的折旧,可以作为损失避免缴纳更多税款。


但这就不是创业公司所要考虑的事了。


无论如何,竞争会决出胜者。无论花掉多少钱,成为第一可能就会带来潜在的收益……



但是什么样的收益,我们还无法作出预测。难道,生成式 AI 真正的赢家是英伟达?


参考内容:

https://www.wsj.com/tech/ai/a-peter-thiel-backed-ai-startup-cognition-labs-seeks-2-billion-valuation-998fa39d

https://www.cognition-labs.com/introducing-devin

https://analyticsindiamag.com/meet-the-creator-of-devin-a-child-prodigy-who-is-making-coding-obsolete/

https://www.reddit.com/r/MachineLearning/comments/1bs1ebl/wsj_the_ai_industry_spent_17x_more_on_nvidia/


机器之心 AI 技术论坛「视频生成技术与应用 — Sora 时代」,将于 4.13 在北京海淀举办。

论坛聚焦于 Sora、视频生成技术、多模态大模型等前沿领域的技术突破和应用实践,助力企业和从业者紧跟技术发展潮流、掌握最新技术进展与技术突破。

早鸟期即将结束,快来锁定入场席位吧!

© THE END 

转载请联系本公众号获得授权

投稿或寻求报道:[email protected]

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
习近平:令我感动的是,昨天给我献花的姑娘就是15年前给我献花的小姑娘7036 血壮山河之枣宜会战 “扑朔迷离”南瓜店 13AI风向标!除了B100,英伟达GTC还要关注什么?语言是一门艺术英伟达股价又创下历史新高!扎克伯格宣布购买35万GPU芯片,芯片的巨大潜力增长均价300万美元?英伟达GH200超级芯片落地9个超算中心,每秒两百亿亿次flopOpenAI有望在今年夏季推出GPT-5;英伟达推出更强GPU芯片;马斯克宣布正式开源Grok-1|AIGC周观察第三十七期去年炒股亏损近3000万元,昔日“西北啤酒王”翻车了!炒股十年赚的钱比卖酒多,如今连亏两年,公司回应→英伟达推「万亿参数」GPU,继续加速「AGI 时代」英伟达新GPU强是真强,贵是真贵英伟达下一代GPU披露:集成八个HBM 4突破摩尔定律极限!前谷歌量子计算团队首创「热力学计算机」,英伟达GPU「退役」?打造比英伟达 Blackwell更强的GPU领航与挑战,英伟达GTC怎么看?国产GPU重大利好!“中国英伟达”千卡集群已就位一个拥有2560 个GPU,316800 个CPU核心的超算一文读懂英伟达的“新GPU”:比H100快5倍?1200W的功耗?液冷?与MI300X比较又如何?英伟达 GTC 大会携万亿参数 GPU「炸裂」 AI 行业从零开始手搓GPU,照着英伟达CUDA来,只用两个星期野心藏不住了!不满CPU统治,英伟达决定彻底重写软件开发栈!黄仁勋:为什么还要用Python?命令行都不需要!GPU开发时代将至中国正在掩盖一场经济危机为AI“降温”:直接对芯片的无水液冷技术大幅降低能耗和成本,正适配英伟达GPU关于未来,英伟达GTC24告诉了人们什么?英伟达吞噬世界!新架构超级GPU问世,AI算力一步提升30倍【解字】品“头”论“足”英伟达GTC解读,看懂未来3年AI格局!|预告英伟达:下一代GPU细节曝光详解最强AI芯片架构:英伟达Blackwell GPU究竟牛在哪?现场对话技术高管从零开始手搓GPU!照着英伟达CUDA来,只用两个星期!热归热,Groq离取代英伟达GPU有多远?业界首次!搭载英伟达GPU,50倍性能提升!Zilliz发布Milvus 2.4向量数据库英伟达发布新一代 GPU 架构;盒马 CEO 侯毅退休;苹果希望将谷歌 Gemini 引入 iPhone | 极客早知道消息称英伟达 Blackwell“B100”GPU 将配 192GB HBM3e 显存,B200 配 288GB 显存童年忆事 一、三虎黄仁勋刚刚发布,英伟达最强GPU B200,首次采用Chiplet?
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。